
 
 

 

 

 

 

TRANSMISSION LINES AND WAVEGUIDES 

UNIT-I 

TRANSMISSION LINE THEORY 
 

 
INTRODUCTION TO TRANSMISSION LINE THEORY 

Transmission Lines and Waveguides 
 

 
A TRANSMISSION LINE is a device designed to guide electrical energy from one point 

to another. It is used, for example, to transfer the output rf energy of a transmitter to an 

antenna. This energy will not travel through normal electrical wire without great losses. 

Although the antenna can be connected directly to the transmitter, the antenna is usually 

located some distance away from the transmitter. 

On board ship, the transmitter is located inside a radio room, and its associated 

antenna is mounted on a mast. A transmission line is used to connect the transmitter and the 

antenna. The transmission line has a single purpose for both the transmitter and the antenna. 

This purpose is to transfer the energy output of the transmitter to the antenna with the least 

possible power loss. How well this is done depends on the special physical and electrical 

characteristics (impedance and resistance) of the transmission line. 
 

 
TRANSMISSION LINE THEORY 

 

 
The 

 
electrical 

 
characteristics of 

 
a two-wire 

 
transmission 

 
line 

 
depend 

 
primarily on 

 
the 

construction of the line. The two-wire line acts like a long capacitor. The change of its capacitive 

reactance is noticeable as the frequency applied to it is changed. 

Since the long conductors have a magnetic field about them when electrical energy is 

being passed through them, they also exhibit the properties of inductance. The values of 

inductance and capacitance presented depend on the various physical factors that we 

discussed earlier. 

For example, the type of line used, the dielectric in the line, and the length of the line 

must be considered. The effects of the inductive and capacitive reactance of the line depend on 

the frequency applied. Since no dielectric is perfect, electrons manage to move from one 



  

conductor to the other through the dielectric. 

Each type of two-wire transmission line also has   a   conductance value. This 

conductance value represents the value of the current flow that may be expected through the 

insulation, If the line is uniform (all values equal at each unit length), then one small section of 



 
 

 
 
 
 

 

the line may represent several feet. This illustration of a two-wire transmission line will be used 

throughout the discussion of transmission lines; but, keep in mind that the principles presented 

apply to all transmission lines.We will explain the theories using LUMPED CONSTANTS and 

DISTRIBUTED CONSTANTS to further simplify these principle. 
 

 
LUMPED CONSTANTS 

 

 
A transmission line has the properties of inductance, capacitance, and resistance just as 

the more conventional circuits have. Usually, however, the constants in conventional circuits 

are lumped into a single device or component. For example, a coil of wire has the property of 

inductance. When a certain amount of 

dimensions is inserted. 

inductance is needed in a circuit, a coil of the proper 

The inductance of the circuit is lumped into the one component. Two metal plates 

separated by a small space, can be used to supply the required capacitance for a circuit. In 

such a case, most of the capacitance of the circuit is lumped into this one component. Similarly, 

a fixed resistor can be used to supply a certain value of circuit resistance as a lumped sum. 

Ideally, a transmission line would also have its constants of inductance, capacitance, and 

resistance lumped together,   as shown   in figure 3-1. Unfortunately, this is not   the 

case.Transmission line constants are as described in the following paragraphs. 

DISTRIBUTED CONSTANTS 

Transmission line constants, called distributed constants, are spread along the entire 

length of the transmission line and cannot be distinguished separately. The amount of 

inductance, capacitance, and resistance depends on the length of the line, the size of the 

conducting wires, the spacing between the wires, and the dielectric (air or insulating medium) 

between the wires. The following paragraphs will be useful to you as you study distributed 



  
constants on a transmission line. 



 
 

 
 

 
 

Two-wire transmission Iine. 
 

 
Inductance of a Transmission Line 

When current flows through a wire, magnetic lines of force are set up around the wire. 

As the current increases and decreases in amplitude, the field around the wire expands and 

collapses accordingly. The energy produced by the magnetic lines of force 

collapsing back into the wire tends to keep the current flowing in the same direction. This 

represents a certain amount of inductance, which is expressed in microhenrys per unitlength. 

Figure 

line. 

illustrates the inductance and magnetic fields of a transmission 

 
 
 

 

Capacitance of a Transmission Line 

 
Capacitance also exists between the transmission line wires, as illustrated in figure 3-3. Notice 

that the two parallel wires act as plates of a capacitor and that the air between them acts as a 

dielectric. The capacitance between the wires is usually expressed in picofarads per unit length. 

This electric field between the wires is similar to the field that exists between the two plates of a 

capacitor. 

Resistance of a Transmission Line 



  
 
 

The 
 
transmission 

 
line 

 
shown 

 
in figure 

 
3-4 

 
has 

 
electrical 

 
resistance 

 
along 

 
its 

 
length. 

 
This 



 
 

resistance is usually 

expressed in ohms per unit length and is shown as existing continuously from one end of the line to 

the other.. 

Leakage Current 

Since any dielectric, even air, is not a perfect insulator, a small current known as LEAKAGE 

CURRENT flows between the two wires. In effect, the insulator acts as a resistor, permitting 

current to pass between the two wires. Figure 3-5 shows this leakage path as resistors in 

parallel connected between the two lines. This property is called CONDUCTANCE (G) and is 

the opposite of resistance. Conductance in transmission lines is expressed as the reciprocal of 

resistance and is usually given in micro mhos per unit length. 

 

ELECTROMAGNETIC FIELDS CHARACTERISTIC IMPEDANCE 
 

 

The distributed constants of resistance, inductance, and capacitance are basic 

properties common to all transmission lines and exist whether or not any current flow exists. As 

soon as current flow and voltage exist in a transmission line, another property becomes quite 

 

evident. This is the presence of an electromagnetic field, or lines of force, about the wires of the 

transmission line. 

The lines of force themselves are not visible; however, understanding the force that an 

electron experiences while in the field of these lines is very important to your understanding of energy 

transmission. There are two kinds of fields; one is associated with voltage and the other 

with current. The field associated with voltage is called the ELECTRIC (E) FIELD. It exerts a 

force on any electric charge placed in it. The field associated with current is called a 

MAGNETIC (H) FIELD, because it tends to extra force on any magnetic pole placed in it. Figure 



  

3-6 
illustrates the way in which the E fields and H fields tend to orient themselves between 

conductors of a typical two-wire transmission line. The illustration shows a cross section of the 

transmission lines. The E field is represented by solid lines and the H field by dotted lines. The 

arrows indicate the direction of the lines of force. Both fields normally exist together and are 
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spoken of collectively as the electromagnetic Field. 
 

 
FieIds between conductors. 

 

 

 
 

 

 
You can describe a transmission line in terms of its impedance. The ratio of voltage to 

current (Ein/Iin) at the input end is known as the INPUT IMPEDANCE (Zin). This is the 

impedance presented to the transmitter by the transmission line and its load, the antenna. 

The ratio of voltage to current at the output (EOUT/IOUT) end is known as the OUTPUT 

IMPEDANCE (ZOUT). This is the impedance presented to the load by the transmission line and 

its source. If an infinitely long transmission line could be used, the ratio of voltage to current at 

any point on that transmission line would be some particular value of impedance. This 

impedance is known as the CHARACTERISTIC IMPEDANCE. The maximum (and most 

efficient) transfer of electrical energy takes place when the source impedance is matched to the 

load impedance. This fact is very important in the study of transmission lines and antennas. If 

the characteristic impedance of the transmission line and the load impedance are equal, energy 

from the transmitter will travel down the transmission line to the antenna with no power loss 

caused by reflection. 

 

LINE LOSSES 
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The discussion of transmission lines so far has not directly addressed LINE LOSSES; 

actually some losses occur in all lines. Line losses may be any of three types 
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1. COPPER, DIELECTRIC, 

2. RADIATION or INDUCTION LOSSES. 
 

 
NOTE: Transmission lines are sometimes referred to as RF lines. In this text the terms are 

used interchangeably. 

Copper Losses 

One type of copper loss is I2R LOSS. In RF lines the resistance of the conductors is 

never equal to zero. Whenever current flows through one of these conductors, some energy is 

dissipated in the form of heat. This heat loss is a POWER LOSS. With copper braid, which has 

a resistance higher than solid tubing, this power loss is higher. 

Another type of copper loss is due to SKIN EFFECT. When dc flows through a 

conductor, the movement of electrons through the conductor’s cross section is uniform, The 

situation is somewhat different when ac is applied. The expanding and collapsing fields about 

each electron encircle other electrons. This phenomenon, called SELF INDUCTION, retards the 

movement of the encircled electrons. 

The flux density at the center is so great that electron movement at this point is reduced. 

As frequency is increased, the opposition to the flow of current in the center of the wire 

increases. Current in the center of the wire becomes smaller and most of the electron flow is on 

the wire surface. When the frequency applied is 100 megahertz or higher, the electron 

movement in the center is so small that the center of the wire could be removed without any 

noticeable effect on current. You should be able to see that the effective cross-sectional area 

decreases as the frequency increases. 

Since resistance is inversely proportional to the cross-sectional area, the resistance will 

increase as the frequency is increased. Also, since power loss increases as resistance 

increases, power losses increase with an increase in frequency because of skin effect. 

Copper losses can be minimized and conductivity increased in an RF line by plating the 

line with silver. Since silver is a better conductor than copper, most of the current will flow 

through the silver layer. The tubing then serves primarily as a mechanical support. 

DieIectric Losses 

DIELECTRIC LOSSES result from the heating effect on the dielectric material between 

the conductors. Power from the source is used in heating the dielectric. The heat produced is 

dissipated into the surrounding medium. When there is no potential difference between two 

conductors, the atoms in the dielectric material between them 

electrons are circular. 

are normal and the orbits of the 

When there is a potential difference between two conductors, the orbits of the electrons 
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change. The 
excessive negative charge on one conductor repels electrons on the dielectric 

toward the positive conductor and thus distorts the orbits of the electrons. 

A change in the path of electrons requires more energy, introducing a power loss. The atomic 

structure of rubber is more difficult to distort than the structure of some other dielectric materials. 

The atoms of materials, such as polyethylene, distort easily. Therefore, polyethylene 

is often used as a dielectric because less power is consumed when its electron orbits are 
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distorted. 

RADIATION AND INDUCTION LOSSES 

RADIAION and INDUCTION LOSSES are similar in that both are caused by the fields 

surrounding the conductors. Induction losses occur when the electromagnetic field about a 

conductor cuts through any nearby metallic object and a current is induced in that object. As a 

result, power is dissipated in the 

Object and is lost. Radiation losses occur because some magnetic lines of force about a 

conductor do not return to the conductor when the cycle alternates. These lines of force are 

projected into space as radiation, and this result in power losses. That is, power is supplied by 

the source, but is not available to the load. 

VOLTAGE CHANGE 

In an electric circuit, energy is stored in electric and magnetic fields. These fields must 

be brought to the load to transmit that energy. At the load, energy contained in the fields is 

converted to the desired form of energy 

Transmission of Energy 

When the load is connected directly to the source of energy, or when the transmission 

line is short, problems concerning current and voltage can be solved by applying Ohm’s law. 

When the transmission line becomes long enough so the time difference between a change 

occurring at the generator and a change appearing at the load becomes appreciable, analysis 

of the transmission line becomes important. 

 

Dc AppIied to a Transmission Line 
 
 

 

In figure 3-7, a battery is connected through a relatively long two-wire transmission line 

to a load at the far end of the line. At the instant the switch 

is closed, neither current nor voltage exists on the line. 
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When the switch is closed, point A becomes a positive potential, and point B becomes 

negative. These points of difference in potential move down the line. However, as the initial 

points of potential leave points A and B, they are followed by new points of difference in 

potential, which the battery adds at A and B. 
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This is merely saying that the battery maintains a constant potential difference between 

points A and B. A short time after the switch is closed, the initial points of difference in potential have 

reached points A’ and B’; the wire sections from points A to A’ and points B to B’ are at the 

same potential as A and B, respectively. The points of charge are represented by plus (+) and 

minus (-) signs along the wires, The directions of the currents in the wires are represented 

by the arrowheads on the line, and the direction of 

line. 

travel is indicated by an arrow below the 

Conventional lines of force represent the electric field that exists between the opposite kinds 

of charge on the wire sections from A to A’ and B to B’. Crosses (tails of arrows) indicate the 

magnetic field created by the electric field moving down the line. The moving electric field 

and the accompanying magnetic field constitute an electromagnetic wave that is moving from 

the generator (battery) toward the load. 

This wave travels at approximately the speed of light in free space. The energy reaching 

the load is equal to that developed at the battery (assuming there are no losses in the 

transmission line). If the load absorbs all of the energy, the current and voltage will be evenly 

Distributed along the line. 

Ac AppIied to a Transmission Line 

When the battery of figure 3-7 is replaced by an ac generator (fig. 3-8), each successive 

instantaneous value of the generator voltage is propagated down the line at the speed of light. The 

action is similar to the wave created by the battery, except the applied voltage is sinusoidal 

instead of constant. Assume that the switch is closed at the moment the generator voltage is 

passing through zero and that the next half cycle makes point A positive. At the end of one 

cycle of generator voltage, the current and voltage distribution will be as shown in figu 

In this illustration the conventional lines of force represent the electric fields. For 

simplicity, the magnetic fields are not shown. Points of charge are indicated by plus (+) and 

minus (-) signs, the larger signs indicating points of higher amplitude of both voltage and 

current. Short arrows indicate direction of current (electron flow). The waveform drawn below 

the transmission line represents the voltage (E) and current (I) waves. 

The line is assumed to be infinite in length so there is no reflection. Thus, traveling 

sinusoidal voltage and current waves continually travel in phase from the generator toward the load, 

or far end of the line. Waves traveling from the generator to the load are called INCIDENT WAVES. 

Waves traveling from the load back to the generator are called REFLECTED WAVES and will be 

explained in later paragraphs. 

 

TRANSMISSION MEDIUMS 

The Navy uses many different types of TRANSMISSION MEDIUMS in its electronic 
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applications. Each medium (line or waveguide) has a certain characteristic impedance value, 

current-carrying capacity, and physical shape and is designed to meet a particular requirement. 

The five types of transmission mediums that we will discuss in this topic. 

 

1. PARALLEL-LINE, 

2. TWISTED PAIR, 
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ANTENNA 

TRANSMI 

TTER 

 

3. SHIELDED PAIR, 

4. COAXIAL LINE, and 

5. WAVEGUIDES. 
 

 
The use of a particular line depends, among other things, on the applied 

frequency, the power-handling capabilities, and the type of installation. 

 

Power Standing-Wave Ratio ParaIIeI Line 
 

 
The square of the vswr is called the POWER One type of parallel line is the TWO-WIRE 

OPENSTANDING-WAVE RATIO (pswr). Therefore: LINE, illustrated in figure 

 
 

 

 

INPUT END TRANSMISSION LINE OUTPUT END 

 
 
 

 
 

 
 
 
 
 

 

This line consists of two wires that are generally spaced from 2 to 6 inches apart by 

insulating spacers. This type of line is most often used for power lines, rural telephone lines, 

and telegraph lines. It is sometimes used as a transmission This ratio is useful because the 

instruments used to line between a transmitter and an antenna or between detect standing 

waves react to the square of the an antenna and a receiver. 

An advantage of this type of line is its simple construction. The principal disadvantages of 

this type of line are the high radiation losses and electrical noise pickup because of the lack of 

shielding. 

 

Radiation losses are produced by the changing fields created by the changing current in 

each conductor. Another type of parallel line is the TWOWIRE RIBBON (TWIN LEAD) LINE, 

illustrated in figure 3-10. This type of transmission line is commonly used to connect a television 

receiving antenna to a home television set. 

This line is essentially the same as the two-wire open line except that uniform spacing is 
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assured 
by embedding the two wires in a low-loss dielectric, usually polyethylene. Since the 

wires are embedded in the thin ribbon of polyethylene, the dielectric space is partly air and 

partly polyethylene. 
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Twisted Pair 

The TWISTED PAIR transmission line is illustrated in figure 3-11. As the name implies, 

the line consists of two insulated wires twisted together to form a flexible line without the use of 

spacers. It is not used for transmitting high frequency because of the high dielectric losses that occur 

in the rubber insulation. When the line is wet, the losses increase greatly. 

 
 

Two-wire ribbon Iine. 

 

 
 

ShieIded pair. 
 

 
The SHIELDED PAIR, shown in 

 
figure, consists of 

 
parallel conductors 

 
separated 

 
from 
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each other and surrounded by a solid dielectric. The conductors are contained within a braided 

copper tubing that acts as an electrical shield. The assembly is covered with a rubber or flexible 

composition coating that protects the line from moisture and mechanical damage. Outwardly, it looks 

much like the power cord of a washing machine or refrigerator. 

ShieIded pair. 

The principal advantage of the shielded pair is that the conductors are balanced to 

ground; that is, the capacitance between the wires is uniform throughout the length of the line. 

This balance is due to the uniform spacing of the grounded shield that surrounds the wires 

along their entire length. The braided copper shield isolates the conductors from stray magnetic 

fields. 

CoaxiaI Lines 
 
 
 
 
 

 

There are two types of COAXIAL LINES, 

1. RIGID (AIR) COAXIAL LINE 

2. FLEXIBLE (SOLID)COAXIAL LINE. 
 

 
The physical construction of both types is basically the same; that is, each contains two 

concentric conductors. 

 

RIGID CO AXIAL LINE 

The rigid coaxial line consists of a central, insulated wire (inner conductor) mounted 

inside a tubular outer conductor. This line is shown in figure 3-13. In some applications, the 

inner conductor is also tubular. The inner conductor is insulated from the outer conductor by 

insulating spacers or beads at regular intervals. The spacers are made of Pyrex, polystyrene, or 

some other material that has good insulating characteristics and low dielectric losses at high 
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frequencies. 

ADVANTAGES OF RIGID CO AXIAL LINE 

The chief advantage of the rigid line is its ability to minimize radiation losses. The 

electric and magnetic fields in a two-wire parallel line extend into space for relatively great 
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distances and radiation losses 

occur. However, in a coaxial line no electric or magnetic fields 

extend outside of the outer conductor. The fields are confined to the space between the two 

conductors, resulting in a perfectly shielded coaxial line. Another advantage is that interference 

from other lines is reduced. 

DIS ADVANTAGES OF RIGID CO AXIAL LINE 

The rigid line has the following disadvantages: 
 
 

 

(1) It is expensive to construct; 

(2) It must be kept dry to prevent excessive leakage between the two 

Conductors; 

(3)  Although high-frequency losses are somewhat less than in previously mentioned 

lines, they are still excessive enough to limit the practical length of the line. Leakage caused by 

the condensation of moisture is prevented in some rigid line applications by the use of an inert gas, 

such as nitrogen, helium, or argon. It is pumped into the dielectric space of the line at a pressure 

that can vary from 3 to 35 pounds per square inch. The inert gas is used to dry the line when 

it is first installed and pressure is maintained to ensure that no moisture enters the line. 

FLEXIBLE CO AXIAL LINE 

Flexible coaxial lines (fig. 3-14) are made with an inner conductor that consists of 

flexible wire insulated from the outer conductor by a solid, continuous insulating material. The 

outer conductor is made of metal braid, which gives the line flexibility. Early attempts at gaining 

flexibility involved using rubber insulators between the two conductors. However, the rubber 

insulators caused excessive losses at high frequencies. 

 

 

FIexibIe coaxiaI Iine. 
 

 
Because of 

 
the 

 
high-frequency 

 
losses 

 
associated 

 
with 

 
rubber 

 
insulators, 

 
polyethylene 

plastic was developed to replace rubber and eliminate these losses. 

Polyethylene plastic is a solid substance that remains flexible over a wide range of 

temperatures. It is unaffected by seawater, gasoline, oil, and most other liquids that may be 
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found 
aboard ship. The use of polyethylene as an insulator results in greater high-frequency 
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losses than the use of air as 
an insulator. However, these losses are still lower than the losses 

associated with most other solid dielectric Materials. 

This concludes our study of transmission lines. The rest of this chapter will be an introduction 

into the study of waveguides. 

 

THE TRANSMISSION LINE EQUATION – GENERAL SOLUTION 

A circuit with distributed parameter requires a method of analysis somewhat different 

from that employed in circuits of lumped constants. Since a voltage drop occurs across each 

series increment of a line, the voltage applied to each increment of shunt admittance is a 

variable and thus the shunted current is a variable along the line. 

 
 

 
Hence the line current around the loop is not a constant, as is assumed in lumped 

constant circuits, but varies from point to point along the line. Differential circuit equations that 

describes that action will be written for the steady state, from which general circuit equation will 

be defined as follows. 

R= series resistance, ohms per unit length of line( includes both wires) 

L= series inductance, henrys per unit length of line 

C= capacitance between conductors, faradays per unit length of line 

G= shunt leakage conductance between conductors, mhos per unit length 

Of line 

ωL = series reactance, ohms per unit length of line Z 

= R+jωL 

ωL = series susceptance, mhos 

Y = G+jωC 

per unit length of line 

S = distance to the point of observation, measured from the receiving end of the line 

I = Current in the line at any point 

E= voltage between conductors at any point 

l = length of line 

The below figure illustrates a line that in the limit may be considered as made up of cascaded 

infinitesimal T sections, one of which is shown. 

 

This incremental section is of length of ds and carries a current I. The series line impedance 

being Z ohms and the voltage drop in the length ds is 

dE = IZds (1) 
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dE   = IZ 

ds 

(2) 

 

 
The shunt admittance per unit length of line is Y mhos, so that 

The admittance of thr line is Yds mhos. The current dI that follows across the line or from one 

conductor to the other is 

dI = EYds (3) 

dI 
= EY 

ds 

 
(4)  

The equation 2 and 4 may be differentiat ed with respwect to s 
 

d 2 E 

ds 2 

d 2 I 

= Z 
dI 

, 
ds 

dE 

= Y 
ds 2 ds 

d 2 E 

ds 2 

 

d 2 I 

ds 2 

= ZYE 

 

 

 
= ZYI 

(5)  

 
 

 
(6)  

These are the ifferential equations of the transmission line, fundamental to circuits of distributed 

constants. 

This results indicates two solutions, one for the plus sign and the other for the minus sign 

before the radical. The solution of the differential; equations are 

 

E = Ae 

I = Ce 

AYs + Be - 

ZY s + De - 

ZY s 

 
 

ZY s 

(7)  
 

(8)  

Where A,B,C,D are arbitrary constants of integration. 

Since the distance is measured from the receiving end of the line, it is possible to assign 

conditions such that at 

 

s = 0, I = I R, E = ER 

 
 

The n equation 7 & 8 becomes 

ER = A + B 

I R = C + D 

 

 

(9)  
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A second set of boundary condition is not available, but the same set may be used over again if 

a new set of equations are formed by differentiation of equation 7 and 8. Thus 
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Z 

2 Y 

Z 

2 Y 

ER Y 

2 Z 

Z 

Z 

� 

R R R 

� 

Z 

 

 

 
dE 

= A
 

ds 

 
 

ZY e 

 

ZY s - B 

 

ZY e - 

 

 

 
ZY s 

 
 

 
(11) 

(10)  

IZ = A e ZY s - B ZY e - ZY s 

 

I = A e ZY s - B e -     ZY s 

dI 
= C

 

ds 

 
e ZY s - 

 
ZY e - 

 

 
ZY s 

(12) 

 

E = C 
Z 

e ZY s - D 
Y 

e -     ZY (13) 

I R  = A 

 
E R = C 

Y 
- B 

Y 

Z 

- D  
Z 

Y 

 

 

 

Simultaneous solution of equation 9 ,12 and 13, along 

with the fact that ER = IRZR and that has 

 

been identified as the Z 0 of the line,leads to solution for the constants of the above equations 

as 

 

ER ER � Z 0 � 
A =  + 

2 
= �1 + 

� 

2 � R    � 

ER ER � Z 0 � 
B =  - 

2 
= 1 - � 

2  � R   
�
� 

I R I R � 
 

  

ZR � 
 

C = + 2 = �1 + � 2 Z 

 
D = 

I R   
- 

 

� 

I R  � 
= 1 - 

 

□ 
0 � 

� 

□ � 
□ � 

 
 

The solution of the differential equations of the transmission line may be written 

ER � Z 0 � ZY s ER �Z 0 � 
 

 
 ZY s 

 

E = �1 + � + �1 - �
�

e    
- 2 � 

Z R 
�e 2 

� Z R 
□ � � � 

(14) 

I � Z � I = �1 + � 
 

  +
ZY s 

�I �Z �1 - � 
 

 

-2 Z�Y s Z 0   
�e 2 � Z 0   

�e 

 

 

 
 

 

 

 

 

Z Y 

ER Y 

2 Z 

� 

2 

R 

2 
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The above equations are very useful form for the voltage and current at any point on a 

transmission line. 

 

 
fter simplifying the above equations we get the final and very useful form of equations 

for voltage and current at any point on a k=line, and are solutions to the wave equation 

E = ER cosh ZY s + IR Z0 sinh ZY s 

 

I = I R 
 

cosh ZY s + 
ER 

sinh 
Z 

 

ZY s 

0 
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WaveIength, VeIocity of propagation 

WaveIength 

The distance the wave travels along the line while the phase angle is changed through 

2∏ radians is called wavelength. 
 

 
λ =2п/ ß 

The change of 2п in phase angle represents one cycle in time and occurs in a distance of one 

wavelength, 

 
VeIocity 

λ= v/f 

 
 

V= f λ 

V=ω/ ß 

This is the velocity of propagation along the line based on the observation of the change in the 

phase angle along the line.It is measured in miles/second if ß is in radians per meter. 

We know that 

Z = R + j ωL 

Y= G+j ωC 

Then 

γ= α+j ß   = 
 

Squaring on both sides 

α 2 + 2 jαβ  - β 2  = RG -� 2 LC +  j� (LG + RC) 

Equating real parts and imaginary parts we get 
 
 
 
 

α = 
 

And the equation for ß is 
 
 
 
 
 

 

β = 
 

 
 

In a perfect line R=0 and G = 0 , Then the above equation would be 

β = � 

And the velocity of propagation for such an ideal line is given by 

 

RG   LC     (RG   LC   +   (LG + CR) 

2 

 

LC 

 RG   LC +  j  (LG + CR  
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v = 
�

 
β 

Thus the above equation showing that the line parameter values fix the velocity of propagation. 
 

 
DISTORTION 

Wave-form distortion 

The value of the attenuation constant α has been determined that 

 

α = 
 

In general α is a function of frequency. All the frequencies transmitted on a line will then not be 

attenuated equally. A complex applied voltage, such as voice voltage containing many 

frequencies, will not have all frequencies transmitted with equal attenuation, and the received 

for will be identical with the input 

frequency distortion. 

Phase Distortion 

waveform at the sending end. This variation ic=s known as 

The of propagation has been stated that 

 

β = 
 

 
 

It is apparent that ωand β do not both involve frequency in same manner and that the velocity of 

propagation will in general be some function of frequency. 

All the frequencies applied to a transmission line will not have the same time of 

transmission , some frequencies delayed more than the others. For an applied voice voltage 

waves the received waves will not be identical with the input wave form at the receiving end, 

since some components will be delayed more than those of the other frequencies. This 

phenomenon is known as deIay or phase distortion. 

Frequency distortion is reduced in the transmission of high quality radio broadcast 

programs over wire line by use of equalizers at line terminals 

 

These circuits are networks whose frequency and phase characteristics are adjusted to 

be inverse to those of the lines, resulting in an over all uniform frequency response over the 

desired frequency band. 

Delay distortion is relatively minor importance to voice and music transmission because 

of the characteristics of ear. It can be very series in circuits intended for picture transmission, and 

applications of the co axial cable have been made to over come the difficulty. 

CR) 

2 
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In such cables the internal inductance is low at high frequencies because of skinn effect, the 

resistance small because of the large conductors, and capacitance and leakance are small 

because of the use of air dielectric with a minimum spacers. The velocity of propagation is 

raised and made more nearly equal for all frequencies. 

The distortion Iess Iine 

If a line is to have neither frequency nor delay distortion,then attenuation constant and velocity 
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of propagation cannot be function of frequency. 

We know that 

v = 
�

 
β 

Then the phase constant be a direct fuction of frequency. 
 
 
 

β = 
 

The above equation shows that if the the term under the second radical be reduced to equal 

(RG + � 2 LC ) 2 

Then the required condition for ß is obtained. Expanding the term under the internal radical and 

forcing the equality gives 

R 2G 2 - 2� 2 LCRG + � 4 L2C2 

This reduces to 

- 2� 2 LCRG +� 2 L2G 2 + �2 C2 

+� 2 L2G 2 + 2�2 

 
 

R 2 = 0 

LCRG + �2 

C2 

R 2 = (RG + �2 LC ) 2 

(LG - CR) 2 = 0 

Therefore the condition that will make phase constant a direct form od=f frequency is 

LG = CR 
 

 
A hypothetical line might be built to fulfill this condition. The line would then have a value of ß 

obtained by use of the above equation. 

Already we know that the formula for the phase constant 

β = � 

Then the velocity of propagation will be 

v = 1/ 

This is the same for the all frequencies, thus eliminating the delay distortion. 

We know that the equation for attenuation constant 

 

α = 
 

May be made independent of frequency if the term under the internal radical is forced to reduce 

to 

(RG + � 2 LC ) 2 
 
 

Analysis shows that the condition for the distortion less line LG = CR , will produce the desired 

result, so that it is possible to make attenuation constant and velocity independent of frequency 

simultaneously. Applying the condition LG= RC to the expression for the attenuation gives 

α = 

This is the independent of frequency, thus eliminating frequency distortion on a line. To achieve 

 

LC 

LC 

CR) 

2 

RG 
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this condition 

LG = CR 

L 
= 

R 

C G 

Require a very large value of L, since G is small. If G is intentionally increased, α and 

attenuation are increased, resulting in poor line efficiency. 

To reduce R raises the size and cost of the conductors above economic limits, so that the 

hypothetical results cannot be achieved. 

THE TELEPHONE CABLE 

In the ordinary telephone cable the wired are insulated with paper and twisted in pairs. This 

construction results in negligible values of inductance and conductance so that reasonable 

assumptions in the audio range of frequencies are that 

Z = R 

Y =  j�C 
 

We know that γ RG -� 2 LC + j� (LG + CR) 
 

 

 
 

γ = j�CR  = 
 

 

 
 

 
With L=0, this equation becomes 

α = 

 

β = 

 

 

 
v = 
� 

= 
β 

It should be observed that both α and the velocity are functions of frequency, such that 

the higher frequencies are attenuated more and travel faster than the lower frequencies. Very 

considerable frequency and delay distortion is the result on the telephone cable. 

INDUCTANCE LOADING OF TELEPHONE CABLE 

A distortion less line with distributed parameters sugest a remedy for the severe 

frequency and delay distortion experienced on long cables. It was indicated that it was 

necessary the L/C ratio to achieve distortion less conditions. Heaviside suggested that the 

inductance be increased, 

And Pupin developed the theory that made possible this increase in the inductance by 

LUMPED 

called 

INDUCTORS spaced at regular intervals along the line. This use of inductance is 

CR 

2 

CR 

2 

2

 

CR 
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In some 
submarine cables, distributed or uniform loading is obtained by winding the 

cable with a high permeability steel tape such as permalloy. This method is employed because 

of the practical difficulties of designing lumped loading coils for such underwater circuits. 
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=   � 

� 

For simplicity, consider first a 
uniformly loaded cable circuit for which it may be assumed 

that G= 0 and for which L has been increased so that �L 

Z = R + j�L 

Y =  j�C 

is large with respect to R. Then 

Since, 

 
 

 
Then 

 
Z = R 2 + � 2 L2 � 

π 
- tan -1 

R
 

2 � 

 

γ = 
Y 

= 
 

= � 
�

π 
-
 1 

tan -1 
R

 

2 2 �L 

R 2 

In view of the fact that R is small with respect to�L , the term 
□ 2 

propagation constant becomes 

may be dropped, and may 

 

 
π 1 R 

γ  = � LC � tan -1 
2 2 �L 

 
If θ = 

π 
- 

1 

2 2 
tan -1 

R
 

�L 

π 1 R 1 R � 
cosθ = cos( tan -1 ) = sin□� tan -1 

2 2 �L � 2 � 
 

 
For a small angle 

 

 

sin θ = tan θ  = θ 

cosθ = 
R

 
2� 

Finally the propagation constant may be written as, 

 
γ = � LC (cosθ + j sin θ ) 

R 

□ 2� 
+ j 
�

 

� 

Therefore, for the uniformly loaded cable, 
 
 

 
2 

L 
2 
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LC 

α = 
 

β = � 

v = 
�

= 
1
 

β 

It is readily observed that, under the assumptions of G=0and �L large with respect to R, 

R L 

2 C 
LC 
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Z 

 

the 

attenuation 

 
 

and 

 
 

velocity 

 
 

are 

 
 

both 

 
 

independent of 

 
 

frequency 

 
 

and 

 
 

the 

 
 

loaded 

 
 

cable 

 
 

will be 

distortion less. The expression for attenuation constant shows that the attenuation may be 

reduced by increasing L, provided that R is not also increased too greatly. 

Continuous 

length. 

or uniform loading is expensive and achieves only a small increase in L per unit 

 

Lumped loading is ordinarily preferred as a means of transmission improvement for 

cables. The improvement obtainable on open wire line is usually not sufficient to justify the 

extra cost of the loading inductors. 

CAMPBELL’S EQUATION 

An analysis for the performance of a line loaded at uniform intervals can be obtained by 

considering a symmetrical section of line from the center of one loading coil to the center of the next, 

where the loading coil of the inductance is Zc. 

 

 

The section line may be replaced with an equivalent T section having symmetrical series 

arms. Adopting the notation of filter circuits one of these series arms is called Z1/2 and is 

Z1 
= Z 0 tanh 

Nγ
 

2 2 

 

Where N is the number miles between loading coils and γ is the propagation constant 

per mile. Upon including half a loading coil, the equivalent series arm of the loaded section 

becomes 
 
 

' 
1   

= c  + tanh 
Nγ

 
2 2 2 

The shunt z2 arm of the equivalent T section is 

 
Z 2 = 

Z 0 
 

 

sinh Nγ 

An equation relating that γ and the circuit element of a T section was already derived, which 

Z 
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may be applied to the loaded T section as 

 

 
cosh Nγ ' 

 

= 1 + 

 

' 
1 

 

 

2Z 2 

Z 
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� 

Zc / 2 + Z 0 tanh(Nγ / 2) 

 

= 1 +  
Z 0 / sinh Nγ 

 
 

By use of exponential it can be shows that 

tanh 
Nγ

 
2 

So that the above equation reduces to 

= 
cosh Nγ -1 

sinh Nγ 

 
cosh Nγ ' = 

Zc 

2Z 0 

 
sinh Nγ + cosh Nγ 

This expression is known as CampbeII’s Equation and permits the determination of a value for 

γ ' of a line section consisting partially of lumped land partially of distributed elements. 

Campbell’s equation makes possible the calculation of the effects of loading coils in 

reducing attenuation and distortion on lines. 
 

 
For a cable Z2 of the above figure is essentially capacitive and the cable capacitance 

plus lumped inductances appear similar to the circuit of the Iow pass fiIter 

It is found that for frequencies below thw cutoff, given by 

1 
f 0 = 

 

The attenuation is reduced as expected, but above cutoff the attenuation rises as a 

result of filter action. This cutoff frequency forms a definite upper limit to   successful 

transmission over cables. 

It can be raised by reducing L but this expedient alloes the attenuation to rise. 

The cutoff frequency also be reduced by spacing the closer together, thus reducing C 

and more closely approximating the distributed constant line, but the cost increases rapidly. 

In practice, a truIy distortion Iess Iine is not obtained by Ioading, because R and L are 

to some extent functions of frequency. Eddy current Iosses in the Ioading inductors 

aggravate this condition. However, a major improvement is obtained in the Ioaded cabIe 

for a reasonabIe frequency range. 

 

INPUT IMPEDANCE AND TRANSFER IMPEDANCE 

The input impedance of a transmission line has already been obtained as 
 
 

□ ZR  cosh γl + Z 0 sinh γl � 
Zs = Z 0 = � 

� 0 cosh γl + ZR sinh γl � 

 

Z 
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In terms of exponentials, this is 

□ eγl + Keγl � 
ZS = Z 0 �� 

eγl - Keγl 
� 

□ � 

If the voltage at the sending –end terminals is known, it is convenient to have the transfer 
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� 

T 

2 

impedance so that the 

received current can be computed directly. The sending end voltage Es 

is 

 

E   =  
ER (ZR  + Z 0 )  

(eγl + Ke -γl ) s 2Z 
R 

E   =  
I R (ZR  + Z 0 ) 

(eγl  + Ke -γl ) 
s 

2
 

For which the transfer impedance is 

Z   = 
Es

 = 
(Z R + Z 0 ) (eγl + Ke -γl ) 

I R 2 

By substituting for K, The above equation becomes 

□ eγl + e -γl □ � eγl - e -γl � 

ZT = Z R �� 
� 

� + � 
�

 
□ � � 

This is recognizable as 

ZT = ZR cosh γl + Z 0 sinh γl 

If the expression is desired in terms of the hyperbolic functions. 

 

 
Open and short circuited lines 

As limited cases it is convenient to consider lines terminated in open circuit or short 

circuit, that is with ZR = ∞or ZR =0. The input impedance of a line of length l is 

□ ZR cosh γl + Z 0 sinh γl � 
Zs = Z 0 = � 

□ Z 0 cosh γl + ZR 
� 

sinh γl � 

And for the short circuit case ZR =0., so that 

Zs = Z 0 tanh γl 

Before the open circuit case is considered, the input impedance should be written 

� cosh γl + (Z 0 / ZR  )sinh γl � 
Zs = Z 0 �� 

□ (Z 0 / ZR ) cosh γl + sinh γl 
�

 

The input impedance of the open circuited line of length l, with ZR = ∞, is 

Zoc = Z 0 coth γl 

By multiplying the above two equations it can be seen that 

Z 0 = 
 

 

This is the same result as was obtained for a lumped network. The above equation supplies a 

 

2 

http://www.padeepz.net/


www.padeepz.net  
very valuable means of experimentally determining the value of z0 of a line. 

Also fro the same two equations 
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tanh γl = 

 

γl = tanh -1 
 

 

 

 

Use of this equation in experimental work requires the determination of the hyperbolic tangent 

of a complex angle. If 

tanh γl = tah(α + jβ )l = U + jV 

Then it can be shown that 

 
 

= 

and 

 
tanh 2αl 

2U 
 

 

1 + U 2 + V 

2U 
 

 

1 - U 2 - V 

 

 

 

 

he value of β is uncertain as to quadrant. Its proper value may be selected if the approximate 

velocity of propagation is known. 

REFLECTION FACTOR AND REFLECTION LOSS 

REFLECTION FACTOR 
 
 

K = 
| 2 Z1Z 2 | 

| Z1 + Z 2 | 

The term K denotes the reflection factor. This ratio indicates the change in current in the load 

due to reflection at the mismatched junction and is called the reflection factor. 

REFLECTION LOSS 

Reflection loss is defined as the number of nepers or decibles by which the current in 

the load under image matched conditions would exceed the current actually flowing in the load. 

This reflection loss involves the reciprocal of the reflection factor K. 

Reflection loss, nepers= ln | | 

 

 
Reflection loss, db = 20 log | | 

 

INSERTION LOSS 

Insertion loss of the line or network is defined as the number of nepers or decibels by 

which the current in the load is changed by the insertion. 

 

Zoc 

Zsc 
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� 

� 

� 

� ) 

� 

� 

 
 
 
 

 

T AND п EQUIVALENT TO LINES 

The design of an equivalent T section from measurement on a network. These relations 

were 
 
 
 

Z1 = Z1oc - 

Z 2 = Z 2oc - 

Z3 = 

 

The input impedance of open circuited and short circuited lines were already developed. 

Z � e γ l + e - � 
Z = 0 = Z � � 

1oc 
tanh 0 � e γ l - e - γ l 

�
 

 
Z 1 sc 

 
= Z 0 tanh 

□ e γ l 

γ l = Z 0 � 
e γ l

 

- e - � 
� 

+ e - γ l 

�
 

 

Since a line is symmetrical network, 

Z1oc = Z 2oc 
 

The Z3 or shunt element of a T section that will be equivalent, in so far as external voltages 

and currents are connected, to the long line can then be readily obtained as 

 

Z3 = 

 

= 
Z 0 

sinh γl 
 
 

The series elements for the equivalent section then are 

□ eγl + e -γ l 2 � 

Z1 = Z 2 = Z1oc = Z 3 = □ eγl    - e -γl - 
eγl   - e - � 

□ (eγ l / 2  + e -γl / 2 ) 2 � 
= Z 

0 
� 

(eγ l /  2   - e -γl / 2 )(eγ l /  2  + e -γ l / � 

Z1 = Z 2 = Z 0 tanh γ l / 2 

The T – section equivalent for the long line, made up of these elements, is shown in the below 

figure. It is useful in certain types of line calculations. 

  

  

 

tanh 

 
 
 tanh γl 
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A π - section equivalent for the line may likewise be determined from the terminal 

measurements. 

Because of symmetry, 
 

 

Z A = ZC = 

 
= 

Z 2oc Z1sc 

 

2 
0 

□ eγl + e -γl � 

 

 

 
 

2Z 0 

Z 0 �� 
eγl   - e -γl  

� - 
eγl  - e -γl 

 

Therefore 

 
 
 

ZA = ZC = 

□ � 

 
 

Z 0 
 

 

tanh(γl / 2) 

 
 

The ZB arm simply obtained as 

 
ZB = 

Z 2oc Z1sc 

 

 
 

ZB = 

2 
0 

 
 

Z 0 / sinh γl 

 
= Z 0 

 
sinh 

  

  

Z 

Z 
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UNIT –II 
 

HIGH FREQUENCY TRANSMISSION LINES 

INTRODUCTION 

When a line, either open wire or coaxial, is used at frequencies of a megacycle or mor, it 

is found that certain approximations may be employed leading to simplified analysis of line 

performance. The assumptions usually made are: 

1. Very considerable skin effect, so that currents may be assumed as flowing on a 

conductor surfaces, internal inductance then being zero. 

2. That □ L>>R whe computing Z. This assumption is justifiable because it is found 

 

that the resistance increases because of skin effect with 

increases directly with f. 

while the line resistance 

3. The lines are well enough constructed that G may be considered zero 

The analysis is made in either of two ways, depending on whether R is merely small with 

respect to � L or R is small, the line is considered completely negligible compared with � L. 

If R is small, the line is considered one of small dissipation, and this concept is useful when 

lines are employed as circuit elements or where resonance properties are involved. If losses 

were neglected then infinte current or voltages would appear in calculations, and and physical reality 

would not be achieved. 

In applications where losses may be neglegted, as in transmission of power at high efficiency, 

R may be considered as negligible, and the line as one of zereo dissipation. These methods will be 

studied separately. 

STANDING WAVES 

When the transmission line is not matched with its load i.e., load impedance is not equal 

to the characteristic impedance ( ZR = Z 0 ) , the energy delivered to the load is reflected back to 

the source. 

The combination of incident and reflected waves give rise to the standing waves. 

STANDING-WAVE RATIO 

The measurement of standing waves on a transmission line yields information about 

equipment operating conditions. Maximum power is absorbed by the load when ZL = Z0. If a line 

has no standing waves, the termination for that line is correct and maximum power transfer takes 

place. 

| VMAX| 

VSWR=    

|VMIN | 

f 

http://www.padeepz.net/


www.padeepz.net  
You have probably noticed that the variation of standing waves shows how near the rf 

line is to being terminated in Z0. A wide variation in voltage along 
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R R 0 

 

 

 

the length means a termination far from Z0. A small variation means termination near Z0. 

Therefore, the ratio of the maximum to the minimum is a measure of the perfection of the 

termination of a line. This ratio is called the STANDING-WAVE RATIO (SWR) and is always 

expressed in whole numbers. For example, a ratio of 1:1 describes a line terminated in its 

characteristic impedance (Z0). 

VoItage Standing-Wave Ratio 

The ratio of maximum voltage to minimum voltage on a line is called the VOLTAGE 

STANDING-WAVE RATIO (VSWR). Therefore: The vertical lines in the formula indicate that the 

enclosed quantities are absolute and that the two values are taken without regard to polarity, 

Depending on the nature of the standing waves, the numerical value of VSWR ranges from a 

value of 1 (ZL = Z0, no standing waves) to an infinite value for theoretically complete reflection. 

Since there is always a small loss on a line, the minimum voltage is never zero and the 

VSWR is always some finite value. However, if the VSWR is to be a useful quantity. the power 

losses along the line must be small in comparison to the transmitted power voltage. Since 

power is proportional to the square of the voltage, the ratio of the square of the maximum and 

minimum voltages is called the power standing- wave ratio. In a sense, the name is misleading 

because the power along a transmission line does not vary. 

Current Standing-Wave Ratio 

The ratio of maximum to minimum current along a transmission line is called CURRENT 

STANDING- WAVE RATIO (ISWR). Therefore: This ratio is the same as that for voltages. It can be 

used where measurements are made with loops that sample the magnetic field along a line. It 

gives the same results as VSWR measurements. 

STANDING WAVE RATIO 

The ratio of the maximum to minimum magnitudes of voltage or current on a line having 

standing waves is called the standing wave ratio or voltage standing wave ratio (VSWR) 

 

S = = 

 

Voltage equation is 

 V = 

 

VR (ZR + Z 0 ) 

 

 

 
jβ - 

 

 

 

 

 
jβx 

   [e + Ke ] 
2ZR 

 

Maxima of voltage occurs at which the incident and reflected waves are in phase 
 
 

Vmax = 
V (Z + Z ) 

[1+ K ] 
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2RZ 

Minima of voltage occurs at which the incident and reflected waves are out of phase 
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[e 

[e 

 

 

 

 
VR (ZR + Z 0 ) 

Vmin = [1- K ] 
2ZR 

 

Vmax 
=

 

Vmin 1 - 
 

 

K = 
 

 

 

 
 

 
 

 

 
 

 

 

 
 

 
 

|K| 

K = 
Vma 

| Vmi 
 

 

 

 

 
 

 
 

 

 
 

SWR 
 

 
This figure shows the relation between standing wave ratio S and reflection coefficient 

ONE EIGTH WAVELINE 

For the transmission line the voltage and current at any point x from the receiving end of 

the transmission line is 

V = 
VR (ZR + Z 0 )γx + Ke -γx ] 

2ZR 

I = 
I R (ZR + Z 0 )γx 

 

 
- Ke 

 

 
-γx ] 

2Z 0 
 
 

The term with γx is identified as the incident wave progressing forward from the source 

to the load, where as the term involving e-γx is the reflected wave traveling from load back 

towards the source. 

1 + K 

K 

 

Vmi 

 

Vmax  

 

 

 

x - V min  

n | + Vmin  
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R 

 

 

For the line of zero dissipation, the attenuation constant is zero. 
 

 
γ  =  jβ   anZd 0  = R0 

 

VR (ZR + Z 0 ) 
V = 

2ZR 

 

[e jβ + Ke 
- jβx ] 

After simplification of the above equation for standing wave |K| = 1 
 

 
V = V coR s 

 

β x + jI R R  si0n 

 

β x. 

Similarly, for the current on the transmission line 
 

 
I = I R cos βx + jVR / R0 sin βx. 

The input impedance of a dissipation line is 

V 
Zs = 

I 

= 
VR cos βx + jI R0Rsin βx 

I R cos βx + jVR / R0 sin βx 
 

 

= R 
�ZR cos βx + jR0 sin βx � 

□ 0 cos βx + jZR sin� 
�

 

Z � +R jR 0 tan β x 
 

Or Z = � � 
 
 

For an eighth wave line 

R�0 + 

 

x = λ / 8, βx = 

jZ R 

 

2π 
. 
λ 

λ   8 

tan β � 

ZR�+ jR0 tan(π / 4) � 
Z s  = R0 � 

R0�+ jZR tan(π / 4)� � 

ZR�+ jR0 � 
Z s  = R0 � 

R0�+ jZ R � � 

 

 

 

If such a line is terminated with pure resistance 

ZR = RR 

Z = 
�RR + jR0 � 

□ 
� 

R0 +  jR�R  
�

 

0 � 

S 
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Since, both the numerator and denominator have identical magnitudes, then 
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34 
 

 

| Zs |= R0 

Thus an eighth – wave line may be used to transfer any resistance to impedance with a 

magnitude equal to R0 of the line, or obtain a magnitude match between a resistance of any 

 

value and R0 , the internal resistance of the source 

QUARTER WAVELINE AND IMPEDANCE MATCHING 

The input impedance of a dissipation transmission line is 
 
 

ZR� + jR0 tan βx � 
Z s  = R0 � � 

R0�+ jZR tan βx � 

ZR�/ tan βx + jR0 � 
Z s  = R0 � 

R0�/ tan βx + jZ R � � 

 
 

For a quarter wave line 

x = λ / 4, βx = 2π / λ * λ / 4 = λ / 2 
 
 

Substituting the parameter value in the above equation the sending end impedance of the 

quarter wave transformer is 
 

 
R0 

2 

Zs = 
ZR 

 
 

A quarter wave section of line may be considered as a transformer to match a load of 

ZR to a source of Zs . Such a match can be obtained if the characteristic impedance  R ' of the 

matching quarter wave section of the line is properly chosen. 

R0 =| ' Zs ZR | 
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UNIT III 

IMPEDANCE MATCHING IN HIGH FREQUENCY 

APLLICATIONS OF QUARTER WAVE TRANSFORMAER 

 A quarter wave transformer may also be used if the load is not a pure resistance 

. 

 The quarter wave transformer is a single frequency or narrow band 

device. The bandwidth may be increased by using two or more 

Quarter wave section in series. 

 A quarter wave transformer may be considered as an impedance 

Inverter in that it can transform a low impedance into a high 

Impedance and vice versa. 
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Zs 
 
 
 
 
 
 
 
 
 
 
 
 
 

HALF WAVE LINE 

Already we know that The input impedance of a dissipation less line is 

 
 
 

For a quarter wave line 

Z R� + jR0 tan βx � 
Zs = R0 � � 

R0�+ jZR tan βx � 

x = λ / 2, βx = 2π / λ * λ / 2 = π 
 

 
Z = R 

 

 

�Z+RjR0 tan π � 
 

 

R0�+ jZR 

ZR 

R0 R0 

s 

ZR 

λ 4 

0 � 
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tan π 
�
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Zs = ZR 
 
 

This line may be considered as one to one transformer. 

APPLICATION: 

It is used in connecting a load to a source in cases when the load and source cannot be 

made adjacent. 

STUB MATCHING 

Need for stub matching 

To match the load impedance to be equal to the input impedance. 

TYPES 

1. 

2. 

 
 

SINGLE STUB MATCHING 

DOUBLE STUB MATCHING 
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SINGLE STUB MATCHING ON A LINE 

For greatest efficiency and delivered power, a high frequency transmission line should 

be operated as a smooth line or with an R0 termination. However, the usual loads, such as 

antennas, do not in general have resistance of value equal to R0, so that many cases it is 

necessary to introduce some form of impedance – transforming action between line and load to 

make the load appear to the line as a resistance value R0. 

The quarter wave line or transformer and the tapered line are such impedance matching 

devices. Another means of accomplishing the desired result is the use of an open or closed 

stub line of suitable length as a reactance shunted across the transmission line at the load to 

resonance with an antiresonant resistance equal to R0. 

 

Voltage minimum before insertion of the stub 

S1 

 S1 

 

ZR 

Ys Yd 
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□ 

 
 

 

Since the input conductance of the of a line is S/R0 at a voltage maximum and S/R0 at 

a voltage minimum, then at some intermediate [point A the real part of the input admittance 

may be an intermediate value of 1/R0 or the input admittance at A has a value 

 
Ys = 

1  
± jβ 

R 

 
The 

 
susceptance B 

 
is the 

0 

 

shunt value at 

 
the 

 
point 

 
in question. 

 
After 

 
the 

 
point 

 
having a 

conductance equal to 1/R0 is located, a short stub line having input susceptance of 

be connected across the transmission line. The input admittance at this point then is 

□ β may 

Ys = 
1 1 
± jβ � jβ = 
R0 R0 

Or the input impedance of the line at point A looking towards the load is 

Zs = R0 
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Since both the location and length of the stub must be determined, two independent 

measurements must be made on the original line and load to secure sufficient data. 

The most easily obtained measurements are the standing wave ratio S and the position 

of a voltage minimum, usually the minimum nearest to the load. A voltage minimum is chosen rather 

than a maximum, since its position usually can be determined more accurately. 

If the location of the stub is fixed with respect to an original voltage minimum, no 

knowledge of the load impedance is needed. 

Because of the paralleling of elements, it is most convenient to work with admittances. 

The input impedance equation is looking towards the load from any point on the line, may 

written as  
 

1 
Ys = R 

 
 

□|1K-□φ - 2βs □ □
|1K+ □φ - 2βs 

□
 

0 □ □ 

Writing G0=1/R0 and changing to rectangular coordinates gives 

1-□| K | cos(φ - 2βs) -  j | K | sin(φ - 2βs) □ 
Ys   = G0  □1

| K | cos(φ - 2βs) +  j | K | sin(φ - 2βs) □   □ 

And upon rationalizing, 

1-□| K |2  -2 j | K | sin(φ - 2βs) □ 
Ys  = G0  □1- | K |2 +2 j | K | cos(φ - 2βs) □ 
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Expressing the shunt conductance as a dimensionless ratio Gs/Go, or on a per unit basis, 

Gs □ 
□ = 

1- | K |2 □ 
□ 

G0 
1 - 

□
2 | K   | cos(φ  -   2βs)+  | K   |2 

□
 

And the shunt susceptance on a per unit basis is 

Bs 
= G □ □ 

0  □1- 
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= 

1- | K |2 -2 j | K | sin(φ - 2βs) 

□ | K |2  +2 j | K | cos(φ - 2β□ s) □ 

After simplifying the above equations we get the location and distance of the stub 

The distance d from the voltage minimum to the point of stub connection is 

d = s2 - s1 

cos-1 | K | 
d = 

2β 

cos
s-1-□ 1   λ□ □ □ 

= 
  s +□  1□ 4  

π 
 

 
Before connection of the stubthe equation is 

L
λ  

tan -1S 

2π S -1 
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The stub length should be 

 
L' = 

 
λ 

- L 
2 

 

 
The CircIe diagram for dissipation Iess Iine 

A somewhat similar circle diagram may be obtained, however, that solves the 

impedance equation and simplifies the design of dissipationless lines considerably. The input 

impedance equation for a dissipation less line may be written as 

Zs  
= 

1+ | K | □φ - 2βs 

R0 1- | K | □φ - 2βs 

Zs 
= r

 + jxa 

R0 

An actual circle will have the radius 

 

S   - 12 
 

 r = = 
2S 

And the center of the circle on the positive is 

 

S   + 12 
c =    = 

2S 

 
 

S - 
1

 
  S 

2 

 
 

S + 
1
 

S 
 

2 

A family of circles may be drawn for successive values of S as in fig. In drawing particular 

circles it is interesting to note that for any circle the 

removed from the origin is at S units on the ra axis 

intercept near origin is at 1/S, and that far 

a 
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2 

□ 

 
 
 
 

 

1.5 

1 

0.5 
 
 

 

-0.5 

-1 

-1.5 
 
 
 
 
 

 

The minimum value for S is unity.The above figure shows that all S circles must 

surround the 1,0 point. In fact, the circle for S = 1 is represented by the 1,0 point. 
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The maximum value of S is infinity, for the case of open circuit or short 
 

circuit line 

termination. As S increase, the radius of the S increases, and the center moves to the right; for 

the limiting case of S = infinity, the circle becomes the xa axis. 

The line impedance is maximum. And 

Zs 1+ | K | 
= S = 

R0 1- | K | 

When 

value, and 

Zs 
terminates at the circle intercept 1/S, the line impedance has a minimum 
R0 

Zs 1 1- | K | 
== 

R0 S 1+ | K | 

After some simplification we get the final equation, that 
 

2 □ 1 □ 1 
ra + □ xa □+ 

□ tan 
□ = 1 + 

tan 2
 

= 
sin 

1 
 

 

2β2 s 

Lines of equal βs are the seen to be circles of radius 

S=3 

222 

2222 

s=1.5 

s=2.5 

s=2 

11111 
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= 
1 

sin2 2βs 
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2 2 

 

With the shift of center downward on the xa axis (ordinate) 

1 
= - 

tan 2 2βs 

S- CIRCLE 
 

□ □ S 12 +   □□ S □ + 12 □ 
□

g - □□  + ba  = 
2 

□ 
 

a □ 2S □ □ 2S □ 
□ □ □ □ □ □ 

 

AppIication of the circIe diagram 

 Used to find the input impedance of a line of any chosen length 

An open circuited line has  S∞= ,  the  corresponding S circle appearing as the 

vertical axis. The input impedance is then pure reactance, with the value for 

various electrical lengths determined by the intersections of the corresponding 

βs with the vertical axis. 

 The input admittance of the line may be found by this method. 
 

A short circuited lin may be solved by determining its admittance. The S circle is 

again the vertical axis, and susceptance values may be read off at appropriate 

intersections of the βs circles with the vertical axiS 

 

SMITH CHART 
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An impedance Smith chart (with no data plotted) 

 

. The Smith Chart can be used to represent many parameters including impedances, 

admittances, refIection coefficients, scattering parameters, noise figure circles, constant 

gain contours and regions for unconditional stability. The Smith Chart is most frequently used at 

or within the unity radius region. However, the remainder is still mathematically relevant, being used, 

for example, in oscillator design and stability analysis 

The Smith Chart is plotted on the complex reflection coefficient plane in two dimensions 

and is scaled in normalized impedance (the most common), normalized admittance or both, 

using different colors to distinguish between them. These are often known as the Z, Y and YZ 

Smith Charts respectively.[7] Normalized scaling allows the Smith Chart to be used for problems 

involving any characteristic impedance or system impedance, although by far the most 

commonly used is 50 ohms. With relatively simple graphical construction it is straightforward to 

convert between normalized impedance (or normalized admittance) and the corresponding 

complex voltage reflection coefficient. 

 

The Smith Chart has circumferential scaling in wavelengths and degrees. The 

wavelengths scale is used in distributed component problems and represents the distance 

measured along the transmission line connected between the generator or source and the load 

to the point under consideration. The degrees scale represents the angle of the voltage 

reflection coefficient at that point. The Smith Chart may also be used for lumped element  

matching and analysis problems. 

 

Use of the Smith Chart and the interpretation of the results obtained using it requires a 

good understanding of AC circuit theory and transmission line theory, both of which are pre- 

requisites for RF engineers. 

 

As impedances and admittances change with frequency, problems using the Smith 

Chart can only be solved manually using one frequency at a time, the result being represented 

by a point. This is often adequate for narrow band applications (typically up to about 5% to 10% 

bandwidth) but for wider bandwidths it is usually necessary to apply Smith Chart techniques at 
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more than one frequency across the operating frequency band. Provided the frequencies are 

sufficiently close, 

locus. 

the resulting Smith Chart points may be joined by straight lines to create a 

 

A locus of points on a Smith Chart covering a range of frequencies can be used to visually 

represent: 

 

• How capacitive or how inductive a load is across the frequency range 
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• How difficult matching is likely to be at various frequencies 

• How well matched a particular component is. 

 

The accuracy of the Smith Chart is reduced for problems involving a large spread of 

impedances or admittances, although the scaling can be magnified for individual areas to 

accommodate these. 

Regions of the Z Smith Chart 

 

If a polar diagram is mapped on to a cartesian coordinate system it is conventional to 

measure angles relative to the positive x-axis using a counter-clockwise direction for positive 

angles. The magnitude of a complex number is the length of a straight line drawn from the 

origin to the point representing it. 

 

The Smith Chart uses the same convention, noting that, in the normalized impedance 

plane, the positive x-axis extends from the center of the Smith Chart at to the point . The region 

above the x-axis represents inductive impedances and the region below the x-axis represents 

capacitive impedances. Inductive impedances have positive imaginary parts and capacitive 

impedances have negative imaginary parts. 

 

If the termination is perfectly matched, the reflection coefficient will be zero, represented 

effectively by a circle of zero radius or in fact a point at the centre of the Smith Chart. If the 

termination was a perfect open circuit or short circuit the magnitude of the reflection coefficient 

would be unity, all power would be reflected and the point would lie at some point on the unity 

circumference circle. 

 

CircIes of Constant NormaIized Resistance and Constant NormaIized Reactance 

 

The normalized impedance Smith Chart is composed of two families of circles: circles of 

constant normalized resistance and circles of constant normalized reactance. In the complex 

reflection coefficient plane the Smith Chart occupies a circle of unity radius centered at the 

origin. In Cartesian coordinates therefore the circle would pass through the points (1,0) and (- 

1,0) on the x-axis and the points (0,1) and (0,-1) on the y-axis. 

 

Working with both the Z Smith Chart and the Y Smith Charts 

 

In RF circuit and matching problems sometimes it is more convenient to work with 

admittances (representing conductance’s and susceptances) and sometimes it is more 
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convenient to 
work with impedances (representing resistances and reactance’s). Solving a 

typical matching problem will often require several changes between both types of Smith Chart, 

using normalized impedance for series elements and normalized admittances for parallel 

elements. For these a dual (normalized) impedance and admittance Smith Chart may be used. 

Alternatively, one type may be used and the scaling converted to the other when required. 
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L 

 

In order to change from normalized impedance to normalized admittance or vice versa, 

the point representing the value of reflection coefficient under consideration is moved through 
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exactly 180 degrees at the same radius. For example the point P1 in the example representing 

a reflection coefficient of has a normalized impedance of. To graphically change this to the 

equivalent normalized admittance point, say Q1, a line is drawn with a ruler from P1 through the 

Smith Chart centre to Q1, an equal radius in the opposite direction. This is equivalent to moving 

the point through a circular path of exactly 180 degrees. Reading the value from the Smith 

Chart for Q1, remembering that the scaling is now in normalized admittance, gives . 

 

Once a transformation from impedance to admittance has been performed the scaling changes 

to normalized admittance until such time that a later transformation back to normalized 

impedance is performed. 

 

PROBLEMS ON SINGLE STUB MATCHING 

1. Determine the Iength and the distance of the stub from the Ioad. Given that a 

compIex Ioad ZL= 50-j100 is to be matched to a 75 ohm transmission Iine using a short 

circuited stub. 

 

Given 

Characteristic impedance of the transmission line Z0= 75ohm 

Load impedance to be matched to the transmission line ZL= 50-j100 

To find 
 
 

1D. istance of the stub from the load 

2L.ength of the stub from the load 

SoIution 

1T.he 

 
normalized 

 
impedance is 

 
determined 

 
by dividing 

 
the 

 
load 

 
impedance 

 
by the 

characteristic impedance of the transmission line. 

Z = 
ZL 

Z 0 

50 - j100 
= 0.667 - j1.33 

75 

2T.he normalized impedance, ZL is plotted on the smith chart by determining the point 

of intersection between 

with X= 1.33 

the constant R circle with R = 0.667 and constant X circle 

The impedance circle is drawn. 

= 
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Because the stubs are connected in parallel with the load, admittances can be much 

easily used rather than impedances to simplify the calculations. 

3T.he normalized admittance is determined from the smith chart by simply rotating the 

impedance plot, by 180degree. This is simply done by drawing a line from point A 
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through the center of the chart 
to the opposite side of the circle, point B. 

4. the admittance point is rotated clockwise to a point on the impedance circle where it 

intersects the characteristic impedance Z0 . At the point C. The real component of 

 

the input impedance at this point is equal to the characteristic impedance Z0 . At this 

point C, the admittance is y=1+j1.7. 

5. The distance from point B to point C, in terms of the wavelength is how far from load 

the stub must be placed, 

The stub must have a zero resistive component impedance and susceptance that 

has the opposite polarity. 

6. To determine the length of the shorted stub that has an opposite reactive component 

to the input admittance, the outside of the Smith chart (R=0) is moved around with the 

starting point at D {since at point D t= 0 and hence γ = ∞ }, until an admittance y 

= 1.7isfound 

7. The distance between point D and E is the length of the stub. For this quantity the 

from the smith chart, 

 

DOUBLE STUB MATCHING 

2. Using DoubIe stub matching, match a compIex Ioad of 

Iine with characteristic impedance Z0 = 75ohm. 

 
 

ZL = 

 
 

18.75+j56.25 to a 

Determine the stub Iengths, assuming a   quarter   waveIength spacing are 

maintained between the two short circuited stubs. 
 

 
A spacing of 

 

λ / 4 is maintained between the stubs, stub2 and stub1. For smooth 
 
line 

operation of the transmission line the input impedance looking into the terminals 2,2 of 

the line should be, 

 

Y2,2 = 1/ Z 0 
 

 

The stub at 1,1 must be capable to transform the admittance at the terminating 

impedance end to the circle B which is displaced from the circle A; R=1 by ‘ λ / 4 ’. 

The quarter wavelength line will further transform the admittance into a value at 2,2 

which plot on the circle A. Thus the line to load distance between position 2,2 is not 

required to be determined. 
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The normalized load impedance 

Zi 
ZL = = 

Z 0 

 

18.75 + j56.25 

75 

ZL = 0.25 + j0.75 

Plotting the normalized impedance on the Smith chart, the impedance circle is drawn 

with distance between the point (1,0) and the point of the normalized impedance as the 

radius {distance, OA} 

 
 
 

1. Moving by 180 degree (0.25 λ ) on the impedance circle , that is at a diametrically 

opposite point to the point A, i.e., point B will give the normalized admittance. 

From the smith chart YL= 0.4-j1.2 

2. Circle A is the constant R circle for R = 1. Circle B is the locus of all the points on the 

circle A is displaced by λ /4, quarter wavelength. The stub 1 adds a suscepatance of all 

the points on the circle B. 

Since stub 1 cannot alter the conductance , to a point on the circle B, point C, 

ZT 

Terminating impedance 

Ls2 

Ls1 
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Y(at point C)= 0.4-j0.5 
 

 
3. Transferring the point C to the point D on the circle A, since the line between 1,1 and 

2,2 is a quarter wave line that transforms the admittance at 1,1 to 2,2 such that the 

conductance equals the characteristic conductance, 1/ Z0. 

Y(At point D ) = 1.0+j1.2 

4. The stub length at 2,2 should cancel the imaginary part of the above admittance of the 

stub at 2,2 must be -1.2. 

5. To find the length of the stub with an admittance , 

(a) +j0.7 and (b) –j1.2 

The outside circle of the smith chart (the circle, R=0), is moved around having a 

reference at a point P, until 

 

An admittance y= -1.2 is found at point E and 

An admittance y= +0.7 is found at point F. 

 

6. From the smith chart, 

Length of the stub 1= distance between P and F Ls1=0.348 λ 

Length of the stub 2= distance between P and F Ls2=0.11 λ 
 

 
3. Determine the foIIwing: 

(a) Standing wave ratio(VSWR) 

(b) Load Admittance 

(c) Impedance of the transmission Iine at the maximum and minimum of the 

stationary waves aIong the Iine 

(d) Distance between Ioad and first voItage maximum. For a transmission Iine with 

characteristic impedance of 50 ohm with a receiving end of 100+j121. The 

waveIength of the eIectricaI signaI aIong the Iine is 2.5m. 

Given: 

Characteristic impedance Z0=50 ohm 

Load impedance ZL= 100+j121ohm 

Wavelength of the electrical signal λ =2.5 

 

 

Solution 

 
1. Normalized impedance = 

100 + j121 
=2+j2.42 
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Ploting the point p on the smith chart . The impedance circle is drawn with O(1+j0) centre and 

radius as (OP), the distance between centre and the normalized voltage standing Wave Ratio = 

5 

2. The point Q diametrically opposite to the normalized impedance point on the impedance 

circle is the normalized admittance of the load. 

Y 
= 0.22 - j0.25 
G0 

YZ0 = 0.22 - j0.25 
Load impedance 

1 
Y = (0.22 - j0.25) 

50 

= 0.0044 - j0.005mho 
 
 

3. Impedance at the first voltage maximum from load =  

5 × Z 0 

= 250ohm 
 
 

Impedance at the first voltage minimum=  

0.2 × Z 0 

= 10ohm 
 

 
Distance between load and first voltage maximum= 

 

 
0.042λ 

= 0,042 × 2.5m 

= 0.105m 
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1. Neper  
 

 

 

 

 

and  

 

UNIT -IV PASSIVE FILTERS 

A neper (Symbol: Np) is a logarithmic unit of ratio. It is not an SI unit but is accepted 

for use alongside the SI. It is used to express ratios, such as gain and loss, and relative 

values. The name is derived from John Napier, the inventor of logarithms. 
 

Like the decibel, it is a unit in a logarithmic scale, the difference being that where 

the decibel uses base-10 logarithms to compute ratios, the neper uses base e ≈ 2.71828. 

The value of a ratio in nepers, Np, is given by 

where x1 and x2 are the values of interest, and ln is the natural logarithm. 

The neper is often used to express ratios of voltage and current amplitudes in electrical 

circuits (or pressure in acoustics), whereas the decibel is used to express power ratios. 

One kind of ratio may be converted into the other. Considering that wave power is 

proportional to the square of the amplitude, we have 
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Like the decibel, the neper is a dimensionless unit. The ITU recognizes both units.  
 

 

 
 

2. Decibel  
 

 

 

 

 

 
 

The decibel and the neper have a fixed ratio to each other. The (voltage) level is 

The decibel (dB) is a logarithmic unit of measurement that expresses the magnitude 

of a physical quantity (usually power or intensity) relative to a specified or implied 

reference level. Since it expresses a ratio of two quantities with the same unit, it is 

a dimensionless unit. A decibel is one tenth of a bel, a seldom-used unit. 
 

The decibel is widely known as a measure of sound pressure level, but is also used 

for a wide variety of other measurements in science and engineering (particularly 

acoustics, electronics, and control theory) and other disciplines. It confers a number 

of advantages, such as the ability to conveniently represent very large or small 

numbers, a logarithmic scaling that roughly corresponds to the human perception of 

sound and light, and the ability to carry out multiplication of ratios by simple 

addition and subtraction. 
 

The decibel symbol is often qualified with a suffix, which indicates which reference 

quantity  or frequency weighting function has been used. For example, 
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volts RMS.[1] 

The definitions of the decibel and bel use base-10 logarithms. For a similar unit 

using natural logarithms to base e, see neper. 

"dBm" indicates that 

the reference quantity is one milliwatt, while "dBu" is referenced to 0.775 
 

 

 

 

 
 

 

 

 
 

Definitions 
 

A decibel is one-tenth of a bel, i.e. 1 B=10 dB. The bel (B) is the logarithm of the 

ratio of two power quantities of 10:1, and for two field quantities in the ratio 

[8]. A 
field quantity is a quantity such as voltage, current, sound pressure, 

electric field strength, velocity and charge density, the square of which in linear 

systems is proportional to power. A power quantity is a power or a quantity 

directly proportional to power, e.g. energy density, acoustic intensity and luminous 

intensity. 
 

The calculation of the ratio in decibels varies depending on whether the quantity 

being measured is a power quantity or a field quantity. 

Power quantities 

When referring to measurements of power or intensity, a ratio can be expressed in 

decibels by evaluating ten times the base-10 logarithm of the ratio of the measured 

quantity to the reference level. Thus, if L represents the ratio of a power value P1 to 

another power value P0, then LdB represents that ratio expressed 

calculated using the formula: 

in decibels and is 

 

 
 

 

P1 and P0 must have the same dimension, i.e. they must measure the same type of 

quantity, and the same units before calculating the ratio: however, the choice of scale 

for this common unit is irrelevant, as it changes both quantities by the same factor, and 

thus cancels in the ratio—the ratio of two quantities is scale-invariant. Note that if P1 

= P0 in the above equation, then LdB = 0. If P1 is greater than P0 then LdB is positive; if 

P1 is less than P0 then LdB is negative. 
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Rearranging the above equation gives the following formula for P1 in terms of P0 
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and LdB: 
 

 

 

 

 

 

 

 

. 

Since a bel is equal to ten decibels, the corresponding formulae for measurement in 

bels (LB) are 

 

 

 
. 

Field quantities 
 

When referring to measurements of field amplitude it is usual to consider the ratio of 

the squares of A1 (measured amplitude) and A0 (reference amplitude). This is because 

in most applications power is proportional to the square of amplitude, and it is 

desirable for the two decibel formulations to give the same result in such typical 

cases. Thus the following definition is used: 

This formula is sometimes called the 20 log rule, and similarly the formula for 

ratios of powers is the 10 log rule, and similarly for other factors.[citation needed] The 

equivalence of 

logarithms. 

and is of the standard properties of 

The formula may be rearranged to give 

Similarly, in electrical circuits, dissipated power is typically proportional to the square 

of voltage or current when the impedance is held constant. Taking voltage as an 

example, this leads to the equation: 
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where V1 is the voltage being measured, V0 is a specified reference voltage, and 

GdB is the power gain expressed in decibels. A similar formula holds for current. 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

An example scale showing x and 10 log x. It is easier to grasp and compare 2 or 3 

digit numbers than to compare up to 10 digits. 

 

Note that all of these examples yield dimensionless answers in dB because they are 

relative ratios expressed in decibels. 

• To calculate the ratio of 1 kW (one kilowatt, or 1000 watts) to 1 W in 

decibels, use the formula 
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To calculate the ratio of 

formula 

to in decibels, use the 

Notice that , illustrating the consequence from the 

definitions above that GdB has the same value, , regardless of whether it is 

obtained with the 10-log or 20-log rules; provided that in the specific system being 

considered power ratios are equal to amplitude ratios squared. 

• To calculate the ratio of 1 mW (one milliwatt) to 10 W in decibels, use the 

formula 

• To find the power ratio corresponding to a 3 dB change in level, use the 

formula 

 
A change in power ratio by a factor of 10 is a 10 dB change. A change in power ratio 

by a factor of two is approximately a 3 dB change. More precisely, the factor is 

103/10, or 1.9953, about 0.24% different from exactly 2. Similarly, an increase of 3 

dB implies an increase in voltage by a factor of approximately , or about 1.41, an 

increase of 6 dB corresponds to approximately four times the power and twice the 

voltage, and so on. In exact terms the power ratio is 106/10, or about 3.9811, a relative 

error of about 0.5%. 

Merits 

 
The use of the decibel has a number of merits: 

• The decibel's logarithmic nature means that a very large range of ratios can 

be represented by a convenient number, in a similar manner to scientific notation. 

This allows one to clearly visualize huge changes of some quantity. (See Bode 

Plot and half logarithm graph.) 
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dB(1 mW) — power measurement relative to 1 milliwatt. XdBm = XdBW + 30. 

• The mathematical properties of logarithms mean that the overall decibel gain 

of a multi-component system (such as consecutive amplifiers) can be calculated 

simply by summing the decibel gains of the individual components, rather than 

needing to multiply amplification factors. Essentially this is because log(A × 

B × C × ...) = log(A) + log(B) + log(C) + 

... 

• The human perception of, for example, sound or light, is, roughly speaking, such 

that a doubling of actual intensity causes perceived intensity to always increase 

by the same amount, irrespective of the original level. The decibel's logarithmic 

scale, in which a doubling of power or intensity always causes an increase of 

approximately 3 dB, corresponds to this perception. 

Absolute and relative decibel measurements 
 

Although decibel measurements are always relative to a reference level, if the numerical 

value of that reference is explicitly and exactly stated, then the decibel measurement is 

called an "absolute" measurement, in the sense that the exact value of the measured 

quantity can be recovered using the formula given earlier. For example, since dBm 

indicates power measurement relative to 1 milliwatt, 

• 0 dBm means no change from 1 mW. Thus, 0 dBm is the power level 

corresponding to a power of exactly 1 mW. 

• 3 dBm means 3 dB greater than 0 dBm. Thus, 3 dBm is the power level 

corresponding to 103/10 × 1 mW, or approximately 2 mW. 

• -6 dBm means 6 dB less than 0 dBm. Thus, -6 dBm is the power level 

corresponding to 10-6/10 × 1 mW, or approximately 250 μW (0.25 mW). 

If the numerical value of the reference is not explicitly stated, as in the dB gain of 

an amplifier, then the decibel measurement is purely relative. The practice of attaching 

a suffix to the basic dB unit, forming compound units such as dBm, dBu, dBA, etc, is 

not permitted by SI.[10] However, outside of documents adhering to SI units, the practice 

is very common as illustrated by the following examples. 
 

Absolute measurements 

Electric power 

dBm or dBmW 
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dB(1 VRMS) — voltage relative to 1 volt, regardless of impedance.[1]  
 

dBu or dBv  
 

 

dBmV  
 

 

 

 

 

 
 

dBW 

dB(1 W) — similar to dBm, except the reference level is 1 watt. 0 dBW = 

+30 dBm; -30 dBW = 0 dBm; XdBW = XdBm - 30. 

Voltage 
 

Since the decibel is defined with respect to power, not amplitude, conversions of 

voltage ratios to decibels must square the amplitude, as discussed above. 

 
 

 

 

 

 
 

A schematic showing the relationship between dBu (the voltage source) and dBm 

(the power dissipated as heat by the 600 Ω resistor) 

 

dBV 

dB(0.775 VRMS) — voltage relative to 0.775 volts.[1] Originally dBv, it was 

changed to dBu to avoid confusion with dBV.[11] The "v" comes from "volt", 

while "u" comes from "unloaded". dBu can be used regardless of impedance, but 

is derived from a 600 Ω load dissipating 0 dBm (1 mW). Reference 

voltage 

dB(1 mVRMS) — voltage relative to 1 millivolt across 75 Ω[12]. Widely used 

in cable television networks, where the nominal strength of a single TV signal 

at the receiver terminals is about 0 dBmV. Cable TV uses 75 Ω coaxial cable, 

so 0 dBmV corresponds to -78.75 dBW (-48.75 dBm) or ~13 nW. 

http://www.padeepz.net/


www.padeepz.net 
 

 

dBμV or dBuV 
 

 

3. Properties of Symmetrical Networks and 

Symmetrical Networks 

Characteristic impedance of 

 

A two-port network (a kind of four-terminal network or quadripole) is an electrical 

circuit or device with two pairs of terminals connected together internally by an 

electrical network. Two terminals constitute a port if they satisfy the essential 

requirement known as the port condition: the same current must enter and leave a 

port. Examples include small-signal models for transistors (such as the hybrid-pi 

model), filters and matching networks. The analysis of passive two-port networks 

is an outgrowth of reciprocity theorems first derived by Lorentz[3]. 

A two-port network makes possible the isolation of either a complete circuit or part 

of it and replacing it by its characteristic parameters. Once this is done, the isolated 

part of the circuit becomes a "black box" with a set of distinctive properties, 

enabling us to abstract away its specific physical buildup, thus simplifying 

analysis. Any linear circuit with four terminals can be transformed into a two-port 

network provided that it does not contain an independent source and satisfies the 

port conditions. 
 

There are a number of alternative sets of parameters that can be used to describe a 

linear two-port network, the usual sets are respectively called z, y, h, g, and ABCD 

parameters, each described individually below. These are all limited to linear 

networks since an underlying assumption of their derivation is that any given 

circuit condition is a linear superposition of various short-circuit and open circuit 

conditions. They are usually 

relations between the variables 

expressed in matrix notation, and they establish 

dB(1 μVRMS) — voltage relative to 1 microvolt. Widely used in television 

and aerial amplifier specifications. 60 dBμV = 0 dBmV. 
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Input voltage 

Output voltage 

Input current 

Output current 

These current and voltage variables are most useful at low-to-moderate frequencies. 

At high frequencies (e.g., microwave frequencies), the use of power and energy 

variables is more appropriate, and the two-port current–voltage 
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approach is replaced by 

an approach based upon scattering parameters. 
 

 

4. voltage and current ratios  
 

In order to simplify calculations, sinusoidal voltage and current waves are 

commonly represented as complex-valued functions of time denoted as and .[7][8]   
 

 

Impedance is defined as the ratio of these quantities.  
 

Substituting these into Ohm's law we have  
 

 

 

 

 

 

 

 

The magnitude equation is the familiar Ohm's law applied to the voltage and 

current amplitudes, while the second equation defines the phase relationship. 

Validity of complex representation 

This representation using complex exponentials may be justified by noting that (by 

The terms four-terminal network and quadripole (not to be confused with quadrupole) 

are also used, the latter particularly in more mathematical treatments although the term 

is becoming archaic. However, a pair of terminals can be called a port only if the 

current entering one terminal is equal to the current leaving the other; this definition is 

called the port condition. A four-terminal network can only be properly called a two-

port when the terminals are connected to the external circuitry in two pairs both 

meeting the port condition. 

Noting that this must hold for all t, we may equate the magnitudes and phases to 

obtain 
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Euler's formula): 
 

 

 

 

 

5. Propagation constant  
 

The propagation constant of an electromagnetic wave is a measure of the change 

undergone by the amplitude of the wave as it propagates in a given direction. The 

i.e. a real-valued sinusoidal function (which may represent our voltage or current 

waveform) may be broken into two complex-valued functions. By the principle of 

superposition, we may analyse the behaviour of the sinusoid on the left-hand side by 

analysing the behaviour of the two complex terms on the right-hand side. Given the 

symmetry, we only need to perform the analysis for one right-hand term; the results 

will be identical for the other. At the end of any calculation, we may return to real-

valued sinusoids by further noting that 

In other words, we simply take the real part of the result. 

Phasors 

A phasor is a constant complex number, usually expressed in exponential form, 

representing the complex amplitude (magnitude and phase) of a sinusoidal function 

of time. Phasors are used by electrical engineers to simplify computations involving 

sinusoids, where they can often reduce a differential equation problem to an algebraic 

one. 
 

The impedance of a circuit element can be defined as the ratio of the phasor 

voltage across the element to the phasor current through the element, as determined 

by the relative amplitudes and phases of the voltage and current. This is identical to 

the definition from Ohm's law given above, recognising that the factors of 

cancel 
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quantity being measured can be the voltage or current in a circuit or a field vector 

such as electric field strength or flux density. The propagation constant itself 

measures change per metre but is otherwise dimensionless. 
 

The propagation constant is expressed logarithmically, almost universally to the 

base e, rather than the more usual base 10 used in telecommunications in other 

situations. The quantity measured, such as voltage, is expressed as a sinusiodal 

phasor. The phase of the sinusoid varies with distance which results in the 

propagation constant being a complex number, 

the phase change. 
 

Alternative names 

the imaginary part being caused by 

 

The term propagation constant is somewhat of a misnomer as it usually varies 

strongly with ω. It is probably the most widely used term but there are a large 

variety of alternative names used by various authors for this quantity. These 

include, transmission   parameter, transmission function, propagation parameter, 

propagation coefficient and transmission constant. In plural, it is usually implied 

that α and β are being referenced separately but collectively as in transmission 

parameters, propagation parameters, propagation coefficients, transmission 

constants and secondary coefficients. This last occurs in transmission line theory, 

the term secondary being used to contrast to the primary line coefficients. The 

primary coefficients being the physical properties of the line; R,C,L and G, from 

which the secondary coefficients may be derived using the telegrapher's equation. 

Note that, at least in the field of transmission lines, the term   transmission 

coefficient has a different meaning despite the similarity of name. Here it is the 
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corollary of reflection coefficient. 

Definition 

The propagation constant, symbol γ, for a given system is defined by the ratio of 

the amplitude at the source 

that, 

of the wave to the amplitude at some distance x, such 

 

 
 

Since the propagation constant is a complex quantity we can write;  
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where 

α, the real part, is called the attenuation constant 

β, the imaginary part, is called the phase constant 

That β does indeed represent phase can be seen from Euler's formula; 

which is a sinusoid which varies in phase as θ varies but does not vary in amplitude 

because; 

The reason for the use of base e is also now made clear. The imaginary phase constant, 

iβ, can be added directly to the attenuation constant, α, to form a single complex number 

that can be handled in one mathematical operation provided they are to the same 

base. Angles measured in radians require base e, so the attenuation is likewise in 

base e. 
 

For a copper transmission line, the propagation constant can be calculated from the 

primary line coefficients by means of the relationship; 

where; 

, the series impedance of the line per metre and, 

, the shunt admittance of the line per metre. 

Attenuation constant 

 
In telecommunications, the term attenuation constant, also called attenuation parameter 

or coefficient, is the attenuation of an electromagnetic wave propagating through a 

medium per unit distance from the source. It is the real part of the propagation constant 

and is measured in nepers per metre. A neper is approximately 8.7dB. Attenuation 

constant can be defined by the amplitude ratio; 
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Optical fibre  

The propagation constant per unit length is defined as the natural logarithmic of ratio 

of the sending end current or voltage to the receiving end current or voltage. 

 

 

 

 
Copper lines 
 

The attenuation constant for copper (or any other conductor) lines can be calculated 

from the primary line coefficients as shown above. For a line meeting the 

distortionless condition, with a conductance G in the insulator, the attenuation constant 

is given by; 

however, a real line is unlikely to meet this condition without the addition of loading 

coils and, furthermore, there are some decidedly non-linear effects operating on the 

primary "constants" which cause a frequency dependence of the loss. There are two 

main components to these losses, the metal loss and the dielectric loss. 
 

The loss of most transmission lines are dominated by the metal loss, which causes 

a frequency dependency due to finite conductivity of metals, and the skin effect inside 

a conductor. The skin effect causes R along the conductor to be approximately 

dependent on frequency according to; 

Losses in the dielectric depend on the loss tangent (tanδ) of the material, which depends 

inversely on the wavelength of the signal and is directly proportional to the 

frequency. 
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The attenuation constant for a particular propagation mode in an optical fiber, the real 

part of the axial propagation constant. 
 

Phase constant 

 
In electromagnetic theory, the phase constant, also called phase change constant, 

parameter or coefficient is the imaginary component of the propagation constant for 

a plane wave. It represents the change in phase per metre along the path travelled by 

the wave at any instant and is equal to the angular wavenumber of the wave. It is 

represented by the symbol β and is measured in units of radians per metre. 
 

From the definition of angular wavenumber; 

This quantity is often (strictly speaking incorrectly) abbreviated to wavenumber. 

Properly, wavenumber is given by, 

which differs from angular wavenumber only by a constant multiple of 2π, in the same 

way that angular frequency differs from frequency. 
 

For a transmission line, the Heaviside condition of the telegrapher's equation tells 

us that the wavenumber must be proportional to frequency for the transmission of the 

wave to be undistorted in the time domain. This includes, but is not limited to, the 

ideal case of a lossless line. The reason for this condition can be seen by considering 

that a useful signal is composed of many different wavelengths in the frequency 

domain. For there to be no distortion of the waveform, all these waves must travel at 

the same velocity so that they arrive at the far end of the line at the same time as a 

group. Since wave phase velocity is given by; 

it is proved that β is required to be proportional to ω. In terms of primary coefficients 

of the line, this yields from the telegrapher's equation for a distortionless line the 

condition; 
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6. Filters  
 

The term propagation constant or propagation function is applied to filters and 

other two-port networks used for signal processing. In these cases, however, the 

attenuation and phase coefficients are expressed in terms of nepers and radians per 

network section rather than per metre. Some authors make a distinction between 

per metre measures (for which "constant" is used) and 

which "function" is used). 

per section measures (for 

 

The propagation constant is a useful concept in filter design which invariably uses 

a cascaded section topology. In a cascaded topology, the propagation constant, 

attenuation constant and phase constant of individual sections may be simply 

added to find the total propagation constant etc. 
 

Cascaded networks 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Three networks with arbitrary propagation constants and impedances connected in 

However, practical lines can only be expected to approximately meet this condition 

over a limited frequency band. 
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cascade. The Zi terms represent image impedance and it is assumed that 

connections are between matching image impedances. 

 

The ratio of output to input voltage for each network is given by, 
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7. Filter fundamentals – Pass and Stop bands. 
 

filters of all types are required in a variety of applications from audio to RF and 

across the whole spectrum of frequencies. As such RF filters form an important 

element within a variety of scenarios, enabling the required frequencies to be 

passed through the circuit, while rejecting those that are not needed. 
 

The ideal filter, whether it is a low pass, high pass, or band pass filter will exhibit 

no loss within the pass band, i.e. the frequencies below the cut off frequency. Then 

above this 

signals. 

frequency in what is termed the stop band the filter will reject all 

 

In reality it is not possible to achieve the perfect pass filter and there is always 

some loss within the pass band, and it is not possible to achieve infinite rejection in 

the stop band. Also there is a transition between the pass band and the stop band, 

The terms are impedance scaling terms[3] and their use is explained in the 

image impedance article. 
 

The overall voltage ratio is given by, 

Thus for n cascaded sections all having matching impedances facing each other, 

the overall propagation constant is given by, 
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where the response curve falls away, with the level of rejection rises as the 

frequency moves from the pass band to the stop band. 
 

 

 

Basic types of RF filter 
 

There are four types of filter that can be defined. Each different type rejects or 

accepts signals in a different way, and by using the correct type of RF filter it is 

possible to accept the required signals and reject those that are not wanted. The 

four basic types of RF filter are: 
 

• Low pass filter 

• High pass filter 

• Band pass filter 

• Band reject filter 
 

As the names of these types of RF filter indicate, a low pass filter only allows 

frequencies below what is termed the cut off frequency through. This can also be 

thought of as a high reject filter as it rejects high frequencies. Similarly a high pass 

filter only allows signals through above the cut off frequency and rejects those 

below the cut off frequency. A band pass filter allows frequencies through within a 

given pass band. Finally the band reject filter rejects signals within a certain band. 

It can be particularly useful for rejecting a particular unwanted signal or set  of 

signals falling within a given bandwidth. 
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filter frequencies 
 

A filter allows signals through in what is termed the pass band. This is the band of 

frequencies below the cut off frequency for the filter. 
 

The cut off frequency of the filter is defined as the point at which the output level 

from the filter falls to 50% (-3 dB) of the in band level, assuming a constant input 

level. The cut off 

frequency. 

frequency is sometimes referred to as the half power or -3 dB 

 

The stop band of the filter is essentially the band of frequencies that is rejected by 

the filter. It is taken as starting at the point where the filter reaches its required 

level of rejection. 
 

 

 

Filter classifications 
 

Filters can be designed to meet a variety of requirements. Although using the same 

basic circuit configurations, the circuit values differ when the circuit is designed to 

meet different criteria. In band ripple, fastest transition to the ultimate roll off, 

highest out of band rejection are some of the criteria that result in different circuit 

values. These different filters are given names, each one being optimised for a 

different element of performance. Three common types of filter are given below: 
 

• Butterworth: This type of filter provides the maximum in band flatness. 

• Bessel: This filter provides the optimum   in-band phase response and 

therefore also provides the best step response. 

• Chebychev: This filter provides fast roll off after the cut off frequency is 

reached. However this is at the expense of in band ripple. The 

ripple that can be tolerated, the faster the roll off. 

more in band 

• Elliptical: This has significant levels of in band and out of band ripple, and 

as expected the higher the degree of ripple that can be tolerated, the steeper 

it reaches its ultimate roll off. 
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Summary 
 

RF filters are widely used in RF design and in all manner of RF and analogue 

circuits in general. As they allow though only particular frequencies or bands of 

frequencies, they are an essential tool for the RF design engineer. 
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Constant k filters, also k-type filters, are a type of electronic filter designed using 

the image method. They are the original and simplest filters produced by this 

methodology and consist of a ladder network of identical sections of passive 

components. Historically, they are the first filters that could approach the ideal 

filter frequency response to within any prescribed limit with the addition of a 

sufficient number of sections. However, they are rarely considered for a modern 

design, the principles behind them having been superseded by other methodologies 

which are more accurate in their prediction of filter response. 
 

Terminology 
 

Some of the impedance terms and section terms used in this article are pictured in 

the diagram below. Image theory defines quantities in terms of an infinite cascade 

of two-port sections, and in the case of the filters being discussed, an infinite 

ladder network of L-sections. Here "L" should not be confused with the inductance 

L – in electronic filter topology, "L" refers to the specific filter shape which 

resembles inverted letter "L". 
 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

The sections of the hypothetical infinite filter are made of series elements having 

8. Constant k filter 
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impedance 2Z and shunt elements with admittance 2Y. The factor of two is 

introduced for mathematical convenience, since it is usual to work in terms of half- 
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sections where it disappears. The image impedance of the input and output port of 

a section will generally not be the same. However, for a mid-series section (that is, 

a section from halfway through a series element to halfway through the next series 

element) will have the same image impedance on both ports due to symmetry. This 

image impedance is designated ZiT due to the "T" topology of a mid-series section. 

Likewise, the image impedance of a mid-shunt section is designated ZiΠ due to the 

"Π" topology. Half of such a "T" or "Π" section is called a half-section, which is 

also an L-section but with half the element values of the full L-section. The image 

impedance of the half-section is dissimilar on the input and output ports: on the 

side presenting the series element it is equal to the mid-series ZiT, but on the side 

presenting the shunt element it is equal to the mid-shunt ZiΠ . There are thus two 

variant ways of using a half-section. 

Derivation 

 

 

 

 

 

 
 

 
 

Constant k low-pass filter half section. Here inductance L is equal Ck2 
 

 

 

 

 

 

 

 
 

 

 

 

Constant k band-pass 

L1 = C2k2 and L2 = C1k2 

filter half section. 
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Image impedance ZiT of a constant k prototype low-pass filter is plotted vs. frequency 

ω. The impedance is purely resistive (real) below ωc, and purely reactive (imaginary) 

above ωc. 

 

The building block of constant k filters is the half-section "L" network, composed 

of a series impedance Z, and a shunt admittance Y. The "k" in "constant k" is the value 

given by,[6] 

Thus, k will have units of impedance, that is, ohms. It is readily apparent that in order 

for k to be constant, Y must be the dual impedance of Z. A physical interpretation of k 

can be given by observing that k is the limiting value of Zi as the size of the section (in 

terms of values of its components, such as inductances, capacitances, etc.) approaches 

zero, while keeping k at its initial value. Thus, k is the characteristic impedance, Z0, 

of the transmission line that would be formed by these infinitesimally small sections. It 

is also the image impedance of the section at resonance, in the case of band-pass filters, 

or at ω = 0 in the case of low-pass filters.[7] For example, the pictured low-pass half-

section has 

 
. 
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lements L and C can be made arbitrarily small while retaining the same value of 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

k. Z and Y however, are both approaching zero, and from the formulae (below) for 

image impedances, 

. 

Image impedance 
 

The image impedances of the section are given by[8] 

and 

Provided that the filter does not contain any resistive elements, the image impedance 

in the pass band of the filter is purely real and in the stop band it is purely imaginary. 

For example, for the pictured low-pass half-section,[9] 

The transition occurs at a cut-off frequency given by 

Below this frequency, the image impedance is real, 

Above the cut-off frequency the image impedance is imaginary, 

Transmission parameters 
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and for a chain of n half-sections  
 

 

 

 

 

 

Prototype transformations  

 

 

 

 

 

 

 
 

 

 

 

 

 
The transfer function of a constant k prototype low-pass filter for a single half- 

section showing attenuation in nepers and phase change in radians. 

See also: Image impedance#Transfer function 

 
The transmission parameters for a general constant k half-section are given by[10] 

For the low-pass L-shape section, below the cut-off frequency, the transmission 

parameters are given by[8] 

That is, the transmission is lossless in the pass-band with only the phase of the 

signal changing. Above the cut-off frequency, the transmission parameters are:[8] 
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The presented plots of image impedance, attenuation and phase change correspond 

to a low-pass prototype filter section. The prototype has a cut-off frequency of ωc = 

1 rad/s and a nominal impedance k = 1 Ω. This is produced by a filter half-section 

with inductance L = 1 henry and capacitance C = 1 farad. This prototype can be 

impedance scaled and frequency scaled to the desired values. The low-pass 

prototype can also be transformed into high-pass, band-pass or band-stop types by 

application of suitable frequency transformations.[11] 
 

Cascading sections 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Gain response, H(ω) for a chain of n low-pass constant-k filter half-sections. 
 

Several L-shape half-sections may be cascaded to form a composite filter. Like 

impedance must always face like in these combinations. There are therefore two 

circuits that can be formed with two identical L-shaped half-sections. Where a port 

of image impedance ZiT faces another ZiT, the section is called a Π section. Where 

ZiΠ faces ZiΠ the section so formed is a T section. Further additions of half-sections 

to either of these section forms a ladder network which may start and end with 

series or shunt elements.[12] 
 

It should be borne in mind that the characteristics of the filter predicted by the 

image method are only accurate if the section is terminated with its image 

impedance. This is usually not true of the sections at either end, which are usually 
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terminated with a fixed resistance. The further the section is from the end of the 

filter, the more accurate the prediction will become, since the effects of the 

terminating impedances are masked by the intervening sections.[13] 
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9. m-derived filter 
 
 

m-derived filters or m-type filters are a type of electronic filter designed using the 

image method. They were invented by Otto Zobel in the early 1920s.[1] This filter 

type was originally intended for use with telephone multiplexing and was an 

improvement on the existing constant k type filter.[2] The main problem being 

addressed was the need to achieve a better match of the filter into the terminating 

impedances. In general, all filters designed by the image method fail to give an 

exact match, but the m-type filter is a big improvement with suitable choice of the 

parameter m. The m-type filter section has a further advantage in that there is a 

rapid transition from the cut-off frequency of the pass band to a pole of attenuation 

just inside the stop band. Despite these advantages, there is a drawback with m- 

type filters; at frequencies past the pole of attenuation, the response starts to rise 

again, and m-types have poor stop band rejection. For this reason, filters designed 

using m-type sections are often designed as composite filters with a mixture of k- 

type and m-type sections and different values of m at different points to get the 

optimum performance from both types.[3] 

 

 

Derivation 
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m-derived series general filter half section. 
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m-derived shunt low-pass filter half section. 

The building block of m-derived filters, as with all image impedance filters, is the "L" 

network, called a half-section and composed of a series impedance Z, and a shunt 

admittance Y. The m-derived filter is a derivative of the constant k filter. The starting 

point of the design is the values of Z and Y derived from the constant k prototype and 

are given by 

where k is the nominal impedance of the filter, or R0. The designer now multiplies 

Z and Y by an arbitrary constant m (0 < m < 1). There are two different kinds of m-

derived section; series and shunt. To obtain the m-derived series half section, the 

designer determines the impedance that must be added to 1/mY to make the image 

impedance ZiT the same as the image impedance of the original constant k section. From 

the general formula for image impedance, the additional impedance required can be 

shown to be[9] 

To obtain the m-derived shunt half section, an admittance is added to 1/mZ to make 

the image impedance ZiΠ the same as the image impedance of the original half section. 

The additional admittance required can be shown to be[10] 
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The pole of attenuation occurs at;  
 

 

The general arrangements of these circuits are shown in the diagrams to the right along 

with a specific example of a low pass section. 

A consequence of this design is that the m-derived half section will match a k-type 

section on one side only. Also, an m-type section of one value of m will not match 

another m-type section of another value of m except on the sides which offer the Zi 

of the k-type.[11] 

Operating frequency 
 

For the low-pass half section shown, the cut-off frequency of the m-type is the same 

as the k-type and is given by 

From this it is clear that smaller values of m will produce closer to the cut-off 

frequency and hence will have a sharper cut-off. Despite this cut-off, it also brings 

the unwanted stop band response of the m-type closer to the cut-off frequency, making 

it more difficult for this to be filtered with subsequent sections. The value of m chosen 

is usually a compromise between these conflicting requirements. There is also a 

practical limit to how small m can be made due to the inherent resistance of the 

inductors. This has the effect of causing the pole of attenuation to be less deep (that is, 

it is no longer a genuinely infinite pole) and the slope of cut-off to be less steep. This 

effect becomes more marked as   is brought closer to , and there ceases to be 

Image impedance 
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m-derived prototype shunt low-pass filter ZiTm image impedance for various values 

of m. Values below cut-off frequency only shown for clarity. 

 

The following expressions for image impedances are all referenced to the low-pass 

prototype section. They are scaled to the nominal impedance R0 = 1, and the frequencies 

in those expressions are all scaled to the cut-off frequency ωc = 1. 

Series sections 
 

The image impedances of the series section are given by[14] 

and is the same as that of the constant k section 

Shunt sections 
 

The image impedances of the shunt section are given by[11] 

and is the same as that of the constant k section 
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and for n half-sections  
 

As with the k-type section, the image impedance of the m-type low-pass section is 

purely real below the cut-off frequency and purely imaginary above it. From the chart 

it can be seen that in the passband the closest impedance match to a constant pure 

resistance termination occurs at approximately m = 0.6.[14] 

Transmission parameters 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

m-Derived low-pass filter transfer function for a single half-section 

 
For an m-derived section in general the transmission parameters for a half-section are 

given by[14] 
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For the particular example of the low-pass L section, the transmission parameters 

solve differently in three frequency bands.[14] 

For the transmission is lossless: 

For the transmission parameters are 

For the transmission parameters are 

Prototype transformations 
 

The plots shown of image impedance, attenuation and phase change are the plots 

of a low-pass prototype filter section. The prototype has a cut-off frequency of ωc = 1 

rad/s and a nominal impedance R0 = 1 Ω. This is produced by a filter half-section where 

L = 1 henry and C = 1 farad. This prototype can be impedance scaled and frequency 

scaled to the desired values. The low-pass prototype can also be transformed into high-

pass, band-pass or band-stop types by application of suitable frequency 

transformations.[15] 

Cascading sections 

 
Several L half-sections may be cascaded to form a composite filter. Like impedance 

must always face like in these combinations. There are therefore two circuits that can 

be formed with two identical L half-sections. Where ZiT faces ZiT, the section is called 

a Π section. Where ZiΠ faces ZiΠ the section formed is a T section. Further additions 

of half-sections to either of these forms a ladder network which may start and end with 

series or shunt elements.[16] 
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10. Crystal filter  
 

It should be born in mind that the characteristics of the filter predicted by the image 

method are only accurate if the section is terminated with its image impedance. This 

is usually not true of the sections at either end which are usually terminated with a 

fixed resistance. The further the section is from the end of the filter, the more accurate 

the prediction will become since the effects of the terminating impedances are masked 

by the intervening sections. It is usual to provide half half-sections at the ends of 

the filter with m = 0.6 as this value gives the flattest Zi in the passband and hence the 

best match in to a resistive termination.[17] 

A crystal filter is a special form of quartz crystal used in electronics systems, in 

particular communications devices. It provides a very precisely defined centre 

frequency and very steep bandpass characteristics, that is a very high Q factor—far 

higher than can be obtained with conventional lumped circuits. 
 

A crystal filter is very often found in the intermediate frequency (IF) stages of high-

quality radio receivers. Cheaper sets may use ceramic filters (which also exploit the 

piezoelectric effect), or tuned LC circuits. The use of a fixed IF stage frequency allows 

a crystal filter to be used because it has a very precise fixed frequency. 
 

The most common use of crystal filters, is at frequencies of 9 MHz or 10.7 MHz to 

provide selectivity in communications receivers, or at higher frequencies as a roofing 

filter in receivers using up-conversion. 
 

Ceramic filters tend to be used at 10.7 MHz to provide selectivity in broadcast FM 

receivers, or at a lower frequency (455 kHz) as the second intermediate frequency filters 

in a communication receiver. Ceramic filters at 455 kHz can achieve similar bandwidths 

to crystal filters at 10.7 MHz. 
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WAVEGUIDES 

Waveguides are basically a device ("a guide") for transporting electromagnetic 

energy from one region to another. Typically, waveguides are hollow metal tubes 

(often rectangular or circular in cross section). They are capable of directing power 

precisely to where it is needed, can handle large amounts of power and function as 

a high-pass filter. 
 

The waveguide acts as a high pass filter in that most of the energy above a certain 

frequency (the cutoff frequency) will pass through the waveguide, whereas most of 

the energy that is below the cutoff frequency will be attenuated by the waveguide. 

Waveguides are often used at microwave frequencies (greater than 300 MHz, with 

8 GHz and above being more common). 
 

Waveguides are wideband devices, and can carry (or transmit) either power or 

communication signals. An example of a hollow metal rectangular waveguide is 

shown in the following figure. 
 

 

 

 

 

UNIT V 
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Waveguides can bend if the desired application requires it, as shown in the 

following Figure. 
 

 

The above waveguides can be used with waveguide to coaxial cable adapters, as 

shown in the next Figure: 
 

 

 

 

 

We now know what a waveguide is. Lets examine metal cavities with a rectangular 

cross section, as shown in Figure 1. Assume the waveguide is filled with vaccuum, 

air 

by 

or some dielectric with the permeability 

. 

given by and the permittivity given 
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The waveguide has a width a in the x-direction, and a height b in the y-direction, 

with a>b. The z-axis is the direction in which the waveguide is to carry power. 
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Figure 1. Cross section of a waveguide with long dimension a and short dimension 

b. 
 

On this page, I'm going to give the general "rules" for waveguides. That is, I'll give 

the equations for key parameters and let you know what the parameters mean. On 

the next page, we'll go into the mathematical derivation (which you would do in 

engineering graduate school), but you can get away with not knowing all that math 

if you don't want to know it. 
 

First and possibly most importantly, this waveguide has a cutoff frequency, fc. The 

cutoff frequency is the frequency at which all lower frequencies are attenuated by 

the waveguide, and above the cutoff frequency all higher frequencies propagate 

 

 

 

within the waveguide. The cutoff frequency defines the high-pass filter 

characteristic of the waveguide: above this frequency, the waveguide passes 

power, below this frequency the waveguide attenuates or blocks power. 
 

The cutoff frequency depends on the shape and size of the cross section of the 

waveguide. The larger the  waveguide is, the lower the cutoff frequency for that 

waveguide is. The formula for the cutoff frequency of a rectangular cross sectioned 

waveguide is given by: 

http://www.padeepz.net/


www.padeepz.net  
 

In the above, c is the speed of light within the waveguide, mu is the permeability of 

the material that fills the waveguide, and epsilon is the permittivity of the material 

that fills the waveguide. Note that the cutoff frequency is independent of the short 

length b of the waveguide. 
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The cutoff frequency for a waveguide with a circular cross section of radius a is 

given by: 
 
 

 

 

 

 

 

 

Due to Maxwell's Equations, the fields within the waveguide always have a 

specific "form" or "waveshape" to them - these are called modes. Assume the 

waveguide is oriented such that the energy is to be transmitted along the 

waveguide axis, the z-axis. The modes are classified as either TE ('transverse 

electric' - which indicates that the E-field is orthogonal to the axis of the 

waveguide, so that Ez=0) or TM ('transverse magnetic' - which indicates that the 

H-field is orthogonal to the axis of the waveguide, so Hz = 0). The modes are 

further classified as TEij, where the i and j indicate the number of wave 

oscillations for a particular field direction in the long direction (dimension a in 

Figure 1) and short direction (dimension b in Figure 1), respectively. 
 

Metal waveguides cannot support the TEM ('transverse electric and magnetic' - 

when Ez and Hz are zero) mode. Their exists no solution to Maxwell's equations 

that also satisfy the required boundary conditions for this mode to occur. 
 

Maxwell's Equations are not easy to solve. Hence, every math trick someone can 

think of will be used in order to make the analysis tractable. We'll start with 

discussing the electric vector potential, F. In a source-free region (i.e., an area 

through which waves propagate that is away from sources), we know that: 
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In the above, D is the Electric Flux Density. If a vector quantity is divergenceless 

(as in the above), then it can be expressed as the curl of another quantity. This 

means that we can write 

as: 

the solution for D and the corresponding electric field E 

 

 
 

In the above, epsilon is the permittivity of the medium through which the wave 
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propagates. We are 

purely in the world of mathematics now. The quantity F is not physical, and is 

of little practical value. It is simply an aid in performing our mathematical 

manipulations. 

It turns out that waves (or electromagnetic energy) can not propagate in a 

waveguide when both Hz and Ez are equal to zero. Hence, what field 

configurations that are allowed will be classified as either TM   (Transverse 

Magnetic, in which Hz=0) and TE (Transverse Electric, in which Ez=0). The 

reason that waves cannot be TEM (Transverse Electromagnetic, Hz=Ez=0) will be 

shown towards the end of this derivation. 
 

To perform our analysis, we'll assume that Ez=0 (i.e., we are looking at a TE mode 

or field configuration). In this case, working through Maxwell's equations, it can be 

shown that the E- and H- fields can be determined from the following equations: 
 

 
 

 

Therefore, if we can find Fz (the z-component of the vector F), then we can find 

the E- and H- fields. In the above equation, k is the wavenumber. 
 

Working through the math of Maxwell's Equations, it can be shown that in a 

source-free region, the vector potential F must satisfy the vector wave equation: 
 

         [1] 
 

To break this equation down, we will look only at the z-component of the above 
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equation (that is, Fz). We will also assume that we are looking at a single 

frequency, so that the time dependence is assumed to be of the form given by (we 

are now using phasors to analyze the equation): 
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Then the equation [1] can be simplified as follows: 
 

            [2] 
 

 

 
 

 

 

 

To solve this equation, we will use the technique of separation of variables. Here 

we assume that the function Fz(x, y, z) can be written as the product of three 

functions, each of a single variable. That is, we assume that: 
 

           [3] 
 

(You might ask, how do we know that the separation of variables assumption 

above is valid? We don't - we just assume its correct, and if it solves the 

differential equation when we are done doing the analysis then the assumption is 

valid). Now we plug in our assumption for Fz (equation [3]) into equation [2], and 

we end up with: 

 

 

 

[4] 
 

In the above equation, the prime represents the derivative with respect to the 

variable in the equation (for instance, Z' represents the derivative of the Z-function 

with respect to z). We will break 

to make our math easier): 
 

 

up the variable k^2 

 

 
 

[5] 

into components (again, just 
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Using equation [5] to breakdown equation [4], we can write: 
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[6] 
 

The reason that the equations in [6] are valid is because they are only functions of 

independent variables - hence, each equation must hold for [5] to be true 

everywhere in the waveguide. Solving the above equations using ordinary 

differential equations theory, we get: 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

[7] 
 

The form of the solution in the above equation is different for Z(z). The reason is 

that both forms (that for X and Y, and that for Z), are both equally valid solutions 

for the differential equations in equation [6]. However, the complex exponential 

typically represents travelling waves, and the [real] sinusoids represent standing 

waves. Hence, we choose the forms given in [7] for the solutions. No math rules 

are violated here; again, we are just choosing forms that will make our analysis 

easier. 
 

For now, we can set c5=0, because we want to analyze waves propagating in the 

+z-direction. The analysis is identical for waves propagating in the -z-direction, so 

this is fairly arbitrary. The solution for Fz can be written as: 
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[8] 
 

If you remember anything about differential equations, you know there needs to be 

some boundary  conditions applied in order to determine the constants. Recalling 

our physics, we know that the tangential Electric fields at any perfect conductor 

must be zero (why? because , so if the conductivity approaches infinity 
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(perfect conductor), 

then if the tangential E-field is not zero then the induced current would be infinite). 

The tangential fields must be zero, so Ex must be zero when y=0 and when y=b 

(see Figure 1 above), no matter what the value for y and z are. In addition, Ey must 

be zero when x=0 and when x=a (independent of x and z). We will calculate Ex: 
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Ex is given by the above equation. The boundary condition given by 
 

Ex( x, y=0, z)=0 [9] 
 

implies that c4 must be equal to zero. This is the only way that boundary condition 

given in [9] will be true for all x and z positions. If you don't believe this, try to 

show that it is incorrect. You will quickly determine that c4 must be zero for the 

boundary condition in [9] to be satisfied everywhere it is required. 

Next, the second boundary condition, 

Ex(x, y=b, z)=0 [10] 
 

implies something very unique. The only way for the condition in [10] to be true 

for all values of x and z whenever y=b, we must have: 
 

 

If this is to be true everywhere, c3 could be zero. However, if c3 is zero (and we 

have already determined that c4 is zero), then all of the fields would end up being 

zero, because the function Y(y) in [7] would be zero everywhere. Hence, c3 cannot 

be zero if we are looking for a nonzero solution. Hence, the only alternative is if 

the above equation implies that: 
 

 

This last equation is fundamental to understanding waveguides. It states that the 
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only solutions for Y(y) function must end up being sinusoids, that an integer 

number of multiples of a half-wavelength. These are the only type of functions that 
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satisfy the differential equation in [6] and the required boundary conditions. This is 

an extremely important concept. 
 

If we invoke our other two boundary conditions: 

Ey(x=0, y, z)=0 

Ey(x=a, y, z)=0 
 

Then (using 

that: 

identical reasoning to that above), we can determine that c2=0 and 

 

 
 

This statement implies that the only functions of x that satisfy the differential 

equation and the required boundary conditions 

sinusoids within the waveguide. 

must be an integer multiple of half- 

 

Combining these results, we can write the solution for Fz as: 
 

 

In the above, we have combined the remaining nonzero constants c1, c3, and c6 

into a single constant, A, for simplicity. We have found that only certain 

distributions (or field configurations) will satisfy the required differential equations 

and the boundary conditions. Each of these field configurations will be known as a 

mode. Because we derived the results above for the TE case, the modes will be 

known as TEmn, where m indicates the number of half-cycle variations within the 

waveguide for X(x), and n indicates the number of half-cycle variations within the 

waveguide for Y(y). 
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Using the field relationships: 
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We can write the allowable field configurations for the TE (transverse electric) 

modes within a waveguide: 
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In the above, the constants are written as Amn - this implies that the amplitude for 

each mode can be independent of the others; however, the field components for a 

single mode 

coefficients). 

must all be related (that is, Ex and Hy do not have independent 

 

Cutoff Frequency (fc) 
 

At this point in the analysis, we are able to say something intelligent. Recall that 

the components of the wavenumber must satisfy the relationship: 
 

              [3] 

Since kx and ky are restrained to only take on certain values, we can plug this fact 

in: 

 

 

 
[4] 

 

An interesting question arises at this point: What is the lowest frequency in which 

the waveguide will propagate the TE mode? 
 

For propagation to occur, . If this is true, then kz is a real number, so that 

the field components (equations [1] and [2]) will contain complex exponentials, 

 

which represent propagating waves. If on the other hand, , then kz will be 

an imaginary number, in which case the complex exponential above in equations 

[1-2] becomes a decaying real exponential. In this case, the fields will not 

propagate but instead quickly die out within the waveguide. Electromagnetic fields 

that die off instead of propagate are referred to as evanescent waves. 
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To find the lowest frequency in which propagation can occur, we set kz=0. This is 

the transition between the cutoff region (evanescent) and the propagation region. 

Setting kz=0 in equation [4], we obtain: 
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[5] 
 

If m and n are both zero, then all of the field components in [1-2] become zero, so 

we cannot have this condition. The lowest value the left hand side of equation [5] 

can take occurs when m=1 and n=0. The solution to equation [5] when m=1 and 

n=0, gives the cutoff frequency for this waveguide: 
 
 

 

Any frequency below the cutoff frequency (fc) will only result in evanescent or 

decaying modes. The waveguide will not transport energy at these frequencies. In 

addition, if the waveguide is operating at a frequency just above fc, then the only 

mode that is a propagating mode will be the TE10 mode. All other modes will be 

decaying. Hence, the TE10 mode, since it has the lowest cutoff frequency, is 

referred to as the dominant mode. 
 

Every mode that can exist within the waveguide has its own cutoff frequency. That 

is, for a given mode to propagate, the operating frequency must be above the cutoff 

frequency for that mode. By solving [5] in a more general form, the cutoff 

frequency for the TEmn mode is given by: 
 
 

 

Although we haven't discussed the TM (transverse magnetic) mode, it will turn out 

that the dominant TM 

mode. 

mode has a higher cutoff frequency than the dominant TE 
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Determining the fields for the TMz (Transverse Magnetic to the z direction) modes 

follows a similar procedure to that for the TEz case. To begin, we'll start by 

discussing the magnetic vector potential, A. This is a non-physical quantity that is 

often in used antenna theory to simplify the mathematics of Maxwell's Equations. 
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To understand the magnetic vector potential, note that since the magnetic flux 

density B must always be divergenceless: 
 

 

If a vector quantity is divergenceless, then it can be expressed as the curl of 

another vector quantity. In math notation, this means that B can be written as: 
 
 

 
In a source free region, it can be shown that A must satisfy the wave equation: 

 

 

In addition, the TMz fields can be found from the Az component of the magnetic 

vector potential, via the following relationships: 
 

 

To solve for Az (and hence determine the E- and H- fields), we follow the same 

procedure as for the TEz case. That is, we use separation of variables and solve the 

wave equation for the z-component of A, then apply boundary conditions that force 
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the tangential components of the E-fields to be zero on the metallic surfaces. 

Performing this procedure, which will not 

for Az: 

be repeated here, we obtain the solution 
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[1] 
 

The corresponding TMz fields for waves propagating in the +z-direction are: 
 

In the above, k is again the wavenumber, and Bmn is a constant, which determines 

the amplitude of the mn mode (a function of how much power is applied to the 

waveguide at that frequency). 
 

Before discussing the modes, we must note that TM0n and TMm0 modes cannot 

exist; that is, m and n must be at least 1. The reason comes from equation [1] above 

- if either m or n are zero, then Az is equal to zero, so all the fields derived must 

also be zero. Hence, the lowest order mode for the TM case is the TM11 mode. 

The same procedures can be applied from the TE case to determine the cutoff 

frequencies for the TMmn mode: 
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MODES 
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Cylindrical waveguide 

Using the complete formulation in the simplest limit possible, global 

electromagnetic modes are here studied in a large aspect ratio, circular cross- 

section vacuum cavity equivalent to a cylindrical waveguide. 
 

Classical electrodynamics [43] show that the EM eigenmode spectrum consists of 

two types of solutions, the transverse electric and the transverse magnetic 

polarizations with frequencies depending on l the radial and m the azimuthal 

mode numbers. These results are reproduced numerically to verify that the wave 

equations (16) can indeed be solved in the vacuum using standard LFEM and 

CFEM discretizations, without introducing spurious modes of numerical origin. It 

is also important to validate the numerical implementation using a simple test case, 

checking that the numerical solutions converge to the analytical values with rates 

expected from the order of the approximations. 
 

The cylindrical waveguide is modeled in 2-D,  with a circular large aspect ratio 

equilibrium defined with a minor radius a chosen so as to obtain the analytical 

eigenmode 

(table 1). 

frequencies in GHz exactly equal to the roots of the Bessel function 

 

 

Table 1: Cylindrical waveguide parameters. 
 

As the equilibrium merely produces the geometry and the mesh, the safety factor 

does not affect the eigenfrequency spectrum; using a large value for , it is 

http://www.padeepz.net/


www.padeepz.net  
 

however possible to everywhere align with the axis of the cylinder and separate 

the components of the TE and the TM polarizations. The complete toroidal wave 
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equations (16) are then discretized in the large aspect ratio cavity, relying on 

numerical cancellations to recover the cylindrical limit. 
 

To compute the eigenmode spectrum, an oscillating source current (eq.22) is 

driven with a small imaginary part in the excitation frequency 

. The power relation (eq.48) yields a complex response 

function which has poles along the real axis that correspond to the 

solutions of the discretized wave equations. The eigenfrequencies are calculated by 

scanning in the complex plane with an increment and a constant 

chosen so as to resolve the response peaks in . The structure of an 

eigenmode is obtained in the limit when the cavity is resonantly excited at 

the maximum of a narrow response peak. 
 

In order to verify that the eigenfrequency spectrum of this cylindrical waveguide is 

complete and does not contain any spurious ''polluting`` mode, two broad scans are 

performed from 10 kHz to 10 GHz with a high resolution in frequency 

and a low resolution in space for LFEM, 

for CFEM). All the Fourier modes representable by the 

numerical discretization are excited with azimuthal currents for TE modes, 

and axial currents for TM modes. Fig.6 summarizes the result obtained with 

LFEM, showing that every mode found numerically could be identified in a one to 

one correspondence with the analytical result. Modes which have low quantum 

numbers (l,m) are, as expected, obtained with a better precision; pushing the 

resolution to the lowest limit of 2 mesh points per wavelength (m=4), the 
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deviations become of course important, but the spectrum remains unpolluted 

(remember fig.3, root b). The same analysis has been repeated with CFEM and 

leads to results which are much more precise. As an illustration, the eigenmode 

has here been calculated on a coarse homogeneous mesh . The 

eigenfrequency obtained numerically GHz is in excellent agreement 

with the analytical result =5.3314 GHz; fig.5 shows the eigenmode structure in a 

     

vector plot of . 
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Figure 5: Re(A_perp) for an eigenmode TE_11 calculated with CFEM. 
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Figure 6: Analytical (circles) and LFEM (x-marks) eigenfrequency spectrum. 
 

A question remained when the boundary conditions were defined in sect.2.2.2: it 

concerned the implementation  of the regularity conditions which is formally not 

sufficient to forbid a weakly singular ( ) behavior of the field in the 

center of the mesh. Fig.5 shows that the field is regular all over the cylinder radius, 

suggesting that the singularity is not strong enough to show up using a FEM 

discretization on a regular mesh. The only way we have found to observe it, was to 

strongly accumulate the mesh points towards the center (for example by dividing 5 

times the radial mesh interval closest to the axis by two, leading to radial mesh 

spacings ). 
 

Having verified that the solutions calculated with the wave equations (eq.16) 

behave in a satisfactory manner, the quality of the LFEM and CFEM 

discretizations is finally best judged in a convergence study monitoring the 

precision of the frequency and the gauge as a function of the spatial resolution. 
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Figure 7: Convergence to the analytical result: relative frequency deviation Delta f 

versus the   number of mesh intervals   (N=N_s=N_theta) for   the   eigenmodes 

TE_01,TE_02,TE_11,TM_00} using LFEM (x-marks) and CFEM (circles). 

 
 

  

Fig.7 shows the convergence of for the eigenmodes , 

, and , where refers to the frequency obtained numerically and 

to the analytical result. Eigenfrequencies converge to the analytical values as 

using LFEM and almost using CFEM, with an excellent initial precision 

better than 1% for two mesh points per wavelength. 
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Figure 8: Precision of the gauge versus the number of mesh intervals 

(N=N_s=N_theta) for the eigenmodes TE_01,TE_02,TE_11,TM_00 using LFEM 

(x-marks) and CFEM (circles). 
 

Convergence is also achieved for the gauge: fig.8 shows that the volume averaged 

 

  

gauge precision converges 

using CFEM. 

to zero as using LFEM, and 

 

To summarize, the calculations performed with the toroidal PENN code used here 

in the simplest limit possible show that Maxwell's equations (16) solved in a 

cylindrical cavity produce the complete physical spectrum without introducing 

numerically produced ''polluting`` modes. Both, the LFEM and the   CFEM 

discretization schemes yield solutions which are numerically sane and converge to 
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the analytical value with rates expected from the order of the interpolations. 
 

Boundary conditions 

Let us review the general boundary conditions on the 

between medium 1 and medium 2: 

field vectors at a surface 
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   (34) 

 

        (35) 

 

                                                           (36) 

 

        (37) 
 

 

 

 

 

where is used for the surface change density (to avoid confusion with the 

conductivity), and is the surface current density. Here, is a unit vector normal 

to the surface, directed from medium 2 to medium 1. We have seen in Section 4.4 

that for normal incidence an electromagnetic wave falls off very rapidly inside the 

surface of a good conductor. Equation (4.35) implies that in the limit of perfect 

conductivity ( ) the tangential component of vanishes, whereas that of 

may remain finite. Let us examine the behaviour of the normal components. 

 
 

 

Let medium 1 be a good conductor for which , whilst medium 2 is a 

perfect insulator. The surface change density is related to the currents flowing 

inside the conductor. In fact, the conservation of charge requires that 
 

(38) 
 

 

 

 

 

 

However, , so it follows from Eq. (6.1)(a) that 
 

(39) 
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It is clear that the normal component of within the conductor also becomes 

vanishingly small as the conductivity approaches infinity. 
 

If vanishes inside a perfect conductor then the curl of also vanishes, and the 

time rate of change of is correspondingly zero. This implies that there are no 

oscillatory fields whatever inside such a conductor, and that the boundary values of 

the fields outside are given by 
 

(40) 
 

  (41) 
 

  (42) 
 

(43) 
 

 

 

 

 

Here, is a unit normal at the surface of the conductor pointing into the conductor. Thus, 

the electric field is normal and the magnetic field tangential at the surface of a perfect 

conductor. For good conductors these boundary conditions yield excellent 

representations of the geometrical configurations of external fields, but they lead to 

the neglect of some important features of real fields, such as 

signal attenuation in wave guides. 

losses in cavities and 

 

In order to estimate such losses it is useful to see how the tangential and normal 

fields compare when is large but finite. Equations (4.5) and (4.34) yield 
 

(44) 
 

 

 
 

 

at the surface of a conductor (provided that the wave propagates into the 

conductor). Let us assume, without obtaining a complete solution, that a wave with 
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very nearly tangential and very nearly normal is propagated along the surface 

of the metal. According to the Faraday-Maxwell equation 
 

(45) 
 

 

 
 

 
 

just outside the surface, where is the component of the propagation vector along 

the surface. However, Eq. (6.5) implies that a tangential component of is 

accompanied by a small 

expressions, we obtain 

tangential component of . By comparing these two 

 

(46) 
 

 

 

 

 

 

where is the skin depth (see Eq. (4.36)) and 

 

 

. It is clear that the ratio of 

the tangential component of to its normal component is of order the skin depth 

divided by the wavelength. It is readily demonstrated that the ratio of the normal 

component of to its tangential component is of this same magnitude. Thus, we 

can see that in the limit of high conductivity, which means vanishing skin depth, 

no fields penetrate the conductor, and the boundary conditions are those given by 

Eqs. (6.4). Let us investigate the solution of the homogeneous wave equation 

subject to such boundary conditions. 
 

 

Cavities with rectangular boundaries 

Consider a vacuum region totally enclosed by rectangular conducting walls. In this 
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case, all of the field components satisfy the wave equation 

 

(47) 
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where represents any component of or . The boundary conditions (6.4) 

require that the electric field is normal to the walls at the boundary whereas the 

magnetic field is tangential. If , , and are the dimensions of the cavity, then it 

is readily verified that the electric field components are 

 
  (48) 

 

  (49) 
 

  (50) 
 

 

 
 

 

where 
 

(51) 
 

 

(52) 
 

 

(53) 
 

 

 

 

 

with , , integers. The allowed frequencies are given by 
 

(54) 
 

 

 

 
 

It is clear from Eq. (6.9) that at least two of the integers , , must be different 

from zero in order to have non-vanishing fields. The magnetic fields obtained by 
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the use of automatically satisfy the appropriate boundary conditions, 

and are in phase quadrature with the electric fields. Thus, the sum of the total 

electric and magnetic energies within the cavity is constant, although the two terms 

oscillate separately. 
 

The amplitudes of the electric field components are not independent, but are 

related by the divergence condition , which yields 
 

(55) 
 

 

 

 

 

There are, in general, two linearly independent vectors that satisfy this 

condition, corresponding to two polarizations. (The exception is the case that one 

of the integers , , is zero, in which case is fixed in direction.) Each vector 

is accompanied by a magnetic field at right angles. The fields corresponding to a 

given set of integers , , and constitute a particular mode of vibration of the 

cavity. It is evident from standard Fourier theory that the different modes are 

orthogonal (i.e., they are normal modes) and that they form a complete set. In other 

words, any general electric and magnetic fields which satisfy the boundary 

conditions (6.4) can be unambiguously decomposed into some linear combination 

of all of the various possible normal modes of the cavity. Since each normal mode 

oscillates at a specific frequency it is clear that if we are given the electric and 

magnetic fields inside the cavity at time then the subsequent behaviour of the 

fields is uniquely determined for all time. 
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The conducting walls gradually absorb energy from the cavity, due to their finite 

resistivity, at a rate which can easily be calculated. For finite 

component of at the walls can be estimated using Eq. (6.5): 

the small tangential 

 

(56) 
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Now, the tangential component of at the walls is slightly different from that 

given by the ideal solution. However, this is a small effect and can be neglected to 

leading order in . The time averaged energy flux into the walls is given by 
 

(57) 
 

 
 

 

 

 

where is the peak value of the tangential magnetic field at the walls predicted 

 

by the ideal solution. According to the boundary condition (6.4)(d), is equal to 

 

the peak value of the 

resistance, 

surface current density . It is helpful to define a surface 

 

(58) 
 

 

 

 

 

where 

 

(59) 
 

 

 
 

 

This approach makes it clear that the dissipation of energy is due to ohmic heating 

in a thin layer, whose thickness is of order the skin depth, on the surface of the 

conducting walls. 
 

 

The quality factor of a resonant cavity 

 
The quality factor of a resonant cavity is defined 
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(60) 
 

 

 

 

 

For a specific normal mode of the cavity this quantity is independent of the mode 

amplitude. By conservation of energy the power dissipated in ohmic losses is 

minus the rate of change of the stored energy . We can write a differential 

equation for the behaviour of as a function of time: 
 

(61) 
 

 

 

 

 

 

where is the oscillation frequency of the normal mode in question. The solution 

to the above equation is 
 

(62) 
 

 

 

 

 

This time dependence of the stored energy 

fields in the cavity are damped as follows: 

suggests that the oscillations of the 

 

(63) 
 

 

 

 

 

where we have allowed for a shift of the resonant frequency as well as the 

damping. A damped oscillation such as this does not consist of a pure frequency. 
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Instead, it is made up of a superposition of frequencies around . 

Standard Fourier analysis yields 
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(64) 
 

 

 

 

 

where 
 
 

 

 

 
 

It follows that 
 
 

 

 
 

(65) 

 

 

 

 
 

 
(66) 

 

 

 

 

 

 

The resonance shape has a full width at half-maximum equal to . For a 

constant input voltage, the energy of oscillation in the cavity as a function of 

frequency follows the resonance curve in the neighbourhood of a particular 

 

resonant frequency. It can be seen that the ohmic losses, which determine for a 

particular mode, also determine the maximum amplitude of the oscillation when 

the resonance condition is exactly satisfied, as well as the width of the resonance 

(i.e., how far off the resonant frequency the system can be driven and still yield a 

significant oscillation amplitude). 
 

 

Cylindrical cavities 

Let us apply the methods of the previous section to the TM modes of a right 

circular cylinder of radius . We can write 
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where satisfies the equation 
 

 

 

 

 

 
 

 

 
 

and are cylindrical polar coordinates. Let 
 
 

 

 

 

 

It follows that 
 

 

 

 

 

 

 

 

 

or 
 
 

 
 

 

 

 
 

where . The above equation is known as Bessel's equation. The two linearly 
 

independent solutions of Bessel's equation are denoted and . In the 
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limit these solutions behave as and , respectively, to lowest order . 

More exactly16 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

for , where 
 

 

 

 

 

 

 

 
    

and is Euler's constant. Clearly, the are well behaved in 

 

  

the limit , whereas the are badly behaved. 

 

 

The asymptotic behaviour of both solutions at large is 
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Thus, 

 

 

for the solutions take the form of gradually decaying oscillations 

 

which are 

Fig. 21. 

in phase quadrature. The behaviour of and is shown in 

 
 

Figure 21: The Bessel functions (solid line) and (dotted line) 

 

 

Since the axis is included in the cavity the radial eigenfunction must be 

 

regular at the origin. This immediately rules out the solutions. Thus, the 

most general solution for a TM mode is 
 
 

 
 

 

 
The are the eigenvalues of , and are determined by the solutions of 

 
 

 

 
 

 

The above constraint ensures that the tangential electric field is zero on the 
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conducting walls surrounding the cavity ( ). 
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The most general solution for a TE mode is 
 
 

 

 

 
 

 

In this case, the are determined by the solution of 
 
 

 

 

 

 
 

where denotes differentiation with respect to the argument. The above constraint 

ensures that the normal magnetic field is zero on the conducting walls surrounding 

the cavity. The oscillation frequency of both the TM and TE modes is given by 
 
 

 

 

 

 

 

If is the ordinal number of a zero of a particular Bessel function of order ( 

increases with increasing values of the argument), then each mode is characterized 

 

by three integers, , , , as in the rectangular case. The th zero of is 

 
 

conventionally denoted [so, ]. Likewise, the th zero of is 

 

denoted . Table 2 shows the first few zeros of , , , and . It is clear 

that for fixed and the lowest frequency mode (i.e., the mode with the lowest 

 

value of ) is a TE mode. The mode with the next highest frequency is also a TE 

mode. The next highest frequency mode is a TM mode, and so on. 
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of , 

 

 

 

 

 
 

 

Table 2: The first few values , and 
 
 

 

 

 

12 

 
14 

 
63 

 
06 

 
 

 

 

 

• Cavity resonators are enclosed metal boxes. 
 

Electromagnetic fields are confined inside the boxes. Radiation and 
resistance 

effects are eliminated, resulting in a very high Q (quality factor) 

high- 

 

A rectangular waveguide with both ends (z=0 and z=d) closed by a conducting 
wall 

(Figure 9-8) : multiple reflections and standing waves 

 
 

 

 

 

 

 

 

 

 

 1 2.40 48 3.83 17 0.00 00 1.84 

 2 5.52 01 7.01 56 3.83 17 5.33 

 3 8.65 37 10.1 73 7.01 56 8.53 

 4 11.7 92 13.3 24 10.1 73 11.7 
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Resonant frequency of rectangular cavity resonator 

 

Degenerate modes : different modes having the same resonant frequency. 

Dominant mode : the mode with the lowest resonant frequency for a given cavity 

size. 

 
 

A resonator is a device or system that exhibits resonance or resonant behavior, that 

is, it naturally oscillates at some frequencies, called its resonant frequencies, with 

greater amplitude than at others. The oscillations in a resonator can be either 

electromagnetic or mechanical (including acoustic). Resonators are used to either 

generate waves of specific frequencies or to select specific frequencies from a 

signal. Musical 

specific tones. 

instruments use acoustic resonators that produce sound waves of 

 

A cavity resonator, usually used in reference to electromagnetic resonators, is one 

in which waves exist in a hollow space inside the device. Acoustic   cavity 

resonators, in which sound is produced by air vibrating in a cavity with one 

opening, are known as Helmholtz resonators. 
 

Cavity resonators 
 

A cavity resonator is a hollow conductor blocked at both ends and along which an 

electromagnetic wave can be supported. It can be viewed as a waveguide short- 

circuited at both ends (see Microwave cavity). 
 

The cavity has interior surfaces which reflect a wave of a specific frequency. When 

a wave that is resonant with the cavity enters, it bounces back and forth within the 

cavity, with low loss (see standing wave). As more wave energy enters the cavity, 
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it combines with and reinforces the standing wave, increasing its intensity. 
 

The cavity magnetron is a vacuum tube with a filament in the center of an 

evacuated, lobed, circular cavity resonator. A perpendicular magnetic field is 
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imposed by a permanent 
attracted 

magnet. The magnetic field causes the electrons, 

to the (relatively) positive outer part of the chamber, to spiral outward in a 

circular 

path 
the 

rather than moving directly to this anode. Spaced about the rim of 

chamber are cylindrical cavities. 
so 

The cavities are open along their length and 

connect the common cavity space. As electrons sweep past 
they 

these openings 

induce a 
the 

resonant high frequency radio field in the cavity, which in turn causes 

electrons 
short 

to bunch into groups. A portion of this field is extracted with a 

antenna that is connected 
cross 

to a waveguide  (a metal tube usually of rectangular 

section). The waveguide directs the extracted RF energy 
be 

to the load, which may 

a cooking 
of 

radar. 

chamber in a microwave oven or a high gain antenna in the case 

 

The klystron, tube waveguide, is a beam tube including at least two 

apertured 

cavity resonators. 
of 

 

The beam of charged particles passes 

 

through the 

 

apertures 

the resonators, 
collector 

often tunable wave reflection grids, in succession. A 

electrode is provided to 
resonators. 

intercept the beam after passing through the 

The 
The 

first resonator causes bunching of the particles passing through it. 
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bunched particles 
then 

travel in a field-free region where further bunching occurs, 

the bunched particles enter the 
it 

second resonator giving up their energy to excite 

into 
a 

oscillations. It is a particle accelerator that works in conjunction with 

specifically 
of 

tuned cavity by the configuration of the structures. On the beamline 

an accelerator system, there are specific sections that are cavity  resonators for 

RF. 
 

The reflex klystron   is a klystron utilizing only a single apertured   cavity 

resonator 

through which the beam of charged particles passes, first in one direction. 
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A 

repeller electrode is provided 
through 

 
to repel 

 
(or redirect) 

 
the beam after 

 
passage 

the resonator back through 
phase 

the resonator in the other direction and in proper 

to reinforce the oscillations set up in the resonator. 
 

In a laser, 
two 

light is amplified in a cavity resonator which is usually composed of 

or more mirrors. Thus an optical cavity, also known as a resonator, is a cavity 

with 

walls which reflect electromagnetic 
wave 

 

waves (light). This will 

 

allow 

 

standing 

modes to exist with little loss outside the cavity. 
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